In
molecular biology
Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
, protein catabolism is the breakdown of
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s into smaller peptides and ultimately into
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s. Protein catabolism is a key function of
digestion
Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intest ...
process. Protein catabolism often begins with
pepsin
Pepsin is an endopeptidase that breaks down proteins into smaller peptides. It is produced in the gastric chief cells of the stomach lining and is one of the main digestive enzymes in the digestive systems of humans and many other animals, w ...
, which converts proteins into polypeptides. These polypeptides are then further degraded. In humans, the pancreatic proteases include
trypsin
Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting these long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the dig ...
,
chymotrypsin, and other enzymes. In the intestine, the small peptides are broken down into amino acids that can be absorbed into the bloodstream. These absorbed amino acids can then undergo
amino acid catabolism
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ami ...
, where they are utilized as an energy source or as precursors to new proteins.
The amino acids produced by catabolism may be directly recycled to form new proteins, converted into different amino acids, or can undergo
amino acid catabolism
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ami ...
to be converted to other compounds via the
Krebs cycle
The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
.
Interface with other cycles
Protein catabolism produces amino acids that are used to form bacterial proteins or oxidized for to meet the energy needs of the cell. Among the several degrading processes for amino acids are
Deamination
Deamination is the removal of an amino group from a molecule. Enzymes that catalyse this reaction are called deaminases.
In the human body, deamination takes place primarily in the liver, however it can also occur in the kidney. In situations of e ...
(removal of an amino group),
transamination
Transamination is a chemical reaction that transfers an amino group to a ketoacid to form new amino acids. This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential a ...
(transfer of amino group),
decarboxylation
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is t ...
(removal of carboxyl group), and
dehydrogenation
In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation. Dehydrogenation is important, both as a useful reaction and a serious problem. At ...
(removal of hydrogen). The degraded amino acid that they can be processed as fuel for the
Krebs/Citric Acid (TCA) Cycle.
Protein degradation
Protein degradation differs from protein catabolism. Proteins are produced and destroyed routinely as part of the normal operations of the cell.
Transcription factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
s, proteins that help regulate protein synthesis, are targets of such degradations. Their degradation is not a significant contributor to the energy needs of the cell. The addition of
ubiquitin
Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
(ubiquitylation) marks a protein for degradation via the
proteasome
Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases.
Proteasomes are part of a major mechanism by w ...
.
Amino acid degradation
Oxidative deamination is the first step to breaking down the amino acids so that they can be converted to sugars. The process begins by removing the amino group of the amino acids. The amino group becomes ammonium as it is lost and later undergoes the
urea cycle
The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic.
The urea cycle converts highl ...
to become urea, in the liver. It is then released into the blood stream, where it is transferred to the kidneys, which will secrete the urea as urine. The remaining portion of the amino acid becomes oxidized, resulting in an alpha-
keto acid
In organic chemistry, keto acids or ketoacids (also called oxo acids or oxoacids) are organic compounds that contain a carboxylic acid group () and a ketone group ().Franz Dietrich Klingler, Wolfgang Ebertz "Oxocarboxylic Acids" in Ullmann's E ...
. The alpha-keto acid will then proceed into the TCA cycle, in order to produce energy. The acid can also enter
glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
, where it will be eventually converted into
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
. The pyruvate is then converted into
acetyl-CoA
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for ...
so that it can enter the TCA cycle and convert the original pyruvate molecules into ATP, or usable energy for the organism.
Transamination leads to the same result as deamination: the remaining acid will undergo either glycolysis or the TCA cycle to produce energy that the organism's body will use for various purposes. This process transfers the amino group instead of losing the amino group to be converted into ammonium. The amino group is transferred to
alpha-ketoglutarate, so that it can be converted to
glutamate
Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
. Then glutamate transfers the amino group to
oxaloacetate
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes ...
. This transfer is so that the oxaloacetate can be converted to aspartate or other amino acids. Eventually, this product will also proceed into oxidative deamination to once again produce alpha-ketoglutarate, an alpha-keto acid that will undergo the TCA cycle, and ammonium, which will eventually undergo the urea cycle.
Transaminase
Transaminases or aminotransferases are enzymes that catalyze a transamination reaction between an amino acid and an α-keto acid. They are important in the synthesis of amino acids, which form proteins.
Function and mechanism
An amino acid co ...
s are enzymes that help catalyze the reactions that take place in transamination. They help catalyze the reaction at the point when the amino group is transferred from the original amino acid, like glutamate to alpha-ketoglutarate, and hold onto it to transfer it to another alpha-ketoacid.
Factors determining protein half-life
Some key factors that determine overall rate include protein half-life, pH, and temperature.
Protein half-life helps determine the overall rate as this designates the first step in protein catabolism. Depending on whether this step is short or long will influence the rest of the metabolic process. One key component in determining the protein half-life is based on the
N-end rule The ''N''-end rule is a rule that governs the rate of protein degradation through recognition of the N-terminal residue of proteins. The rule states that the ''N''-terminal amino acid of a protein determines its half-life (time after which half of ...
. This states that the amino acid present at the
N-terminus
The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
of a protein helps determine the protein's half-life.
Further reading
*
See also
*
Amino acid synthesis
Amino acid synthesis is the set of biochemical processes (metabolic pathways) by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to s ...
*
Anabolism
Anabolism () is the set of metabolic pathways that construct molecules from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catabolism is the breaking-do ...
*
Metabolism
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
*
Proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
References
{{DEFAULTSORT:Protein Catabolism
Metabolism
Proteins as nutrients