HOME

TheInfoList



OR:

In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it were applied once (i.e. P is idempotent). It leaves its
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.


Definitions

A projection on a vector space V is a linear operator P : V \to V such that P^2 = P. When V has an inner product and is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
(i.e. when V is a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
) the concept of
orthogonality In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
can be used. A projection P on a Hilbert space V is called an orthogonal projection if it satisfies \langle P \mathbf x, \mathbf y \rangle = \langle \mathbf x, P \mathbf y \rangle for all \mathbf x, \mathbf y \in V. A projection on a Hilbert space that is not orthogonal is called an oblique projection.


Projection matrix

* In the
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to disti ...
case, a
square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ...
P is called a projection matrix if it is equal to its square, i.e. if P^2 = P. * A square matrix P is called an orthogonal projection matrix if P^2 = P = P^ for a real matrix, and respectively P^2 = P = P^ for a complex matrix, where P^ denotes the transpose of P and P^ denotes the adjoint or Hermitian transpose of P. * A projection matrix that is not an orthogonal projection matrix is called an oblique projection matrix. The eigenvalues of a projection matrix must be 0 or 1.


Examples


Orthogonal projection

For example, the function which maps the point (x,y,z) in three-dimensional space \mathbb^3 to the point (x,y,0) is an orthogonal projection onto the ''xy''-plane. This function is represented by the matrix P = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end. The action of this matrix on an arbitrary vector is P \begin x \\ y \\ z \end = \begin x \\ y \\ 0 \end. To see that P is indeed a projection, i.e., P = P^2, we compute P^2 \begin x \\ y \\ z \end = P \begin x \\ y \\ 0 \end = \begin x \\ y \\ 0 \end = P\begin x \\ y \\ z \end. Observing that P^ = P shows that the projection is an orthogonal projection.


Oblique projection

A simple example of a non-orthogonal (oblique) projection is P = \begin 0 & 0 \\ \alpha & 1 \end. Via matrix multiplication, one sees that P^2 = \begin 0 & 0 \\ \alpha & 1 \end \begin 0 & 0 \\ \alpha & 1 \end = \begin 0 & 0 \\ \alpha & 1 \end = P. showing that P is indeed a projection. The projection P is orthogonal if and only if \alpha = 0 because only then P^ = P.


Properties and classification


Idempotence

By definition, a projection P is idempotent (i.e. P^2 = P).


Open map

Every projection is an
open map In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y. Likewise, a ...
, meaning that it maps each open set in the
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
to an open set in the subspace topology of the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
. That is, for any vector \mathbf and any ball B_\mathbf (with positive radius) centered on \mathbf, there exists a ball B_ (with positive radius) centered on P\mathbf that is wholly contained in the image P(B_\mathbf).


Complementarity of image and kernel

Let W be a finite-dimensional vector space and P be a projection on W. Suppose the subspaces U and V are the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
and kernel of P respectively. Then P has the following properties: # P is the identity operator I on U: \forall \mathbf x \in U: P \mathbf x = \mathbf x. # We have a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
W = U \oplus V. Every vector \mathbf x \in W may be decomposed uniquely as \mathbf x = \mathbf u + \mathbf v with \mathbf u = P \mathbf x and \mathbf v = \mathbf x - P \mathbf x = \left(I-P\right) \mathbf x, and where \mathbf u \in U, \mathbf v \in V. The image and kernel of a projection are ''complementary'', as are P and Q = I - P. The operator Q is also a projection as the image and kernel of P become the kernel and image of Q and vice versa. We say P is a projection along V onto U (kernel/image) and Q is a projection along U onto V.


Spectrum

In infinite-dimensional vector spaces, the spectrum of a projection is contained in \ as (\lambda I - P)^ = \frac 1 \lambda I + \frac 1 P. Only 0 or 1 can be an eigenvalue of a projection. This implies that an orthogonal projection P is always a positive semi-definite matrix. In general, the corresponding eigenspaces are (respectively) the kernel and range of the projection. Decomposition of a vector space into direct sums is not unique. Therefore, given a subspace V, there may be many projections whose range (or kernel) is V. If a projection is nontrivial it has minimal polynomial x^2 - x = x (x-1), which factors into distinct linear factors, and thus P is diagonalizable.


Product of projections

The product of projections is not in general a projection, even if they are orthogonal. If two projections commute then their product is a projection, but the converse is false: the product of two non-commuting projections may be a projection. If two orthogonal projections commute then their product is an orthogonal projection. If the product of two orthogonal projections is an orthogonal projection, then the two orthogonal projections commute (more generally: two self-adjoint endomorphisms commute if and only if their product is self-adjoint).


Orthogonal projections

When the vector space W has an inner product and is complete (is a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
) the concept of
orthogonality In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
can be used. An orthogonal projection is a projection for which the range U and the null space V are
orthogonal subspaces In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. Thus, for every \mathbf x and \mathbf y in W, \langle P \mathbf x, (\mathbf y - P \mathbf y) \rangle = \langle (\mathbf x - P \mathbf x) , P \mathbf y \rangle = 0. Equivalently: \langle \mathbf x, P \mathbf y \rangle = \langle P \mathbf x, P \mathbf y \rangle = \langle P \mathbf x, \mathbf y \rangle. A projection is orthogonal if and only if it is self-adjoint. Using the self-adjoint and idempotent properties of P, for any \mathbf x and \mathbf y in W we have P\mathbf \in U, \mathbf - P\mathbf \in V, and \langle P \mathbf x, \mathbf y - P \mathbf y \rangle = \langle P^2 \mathbf x, \mathbf y - P \mathbf y \rangle = \langle P \mathbf x, P \left(I-P\right) \mathbf y \rangle = \langle P \mathbf x, \left(P-P^2\right) \mathbf y \rangle = 0 where \langle \cdot, \cdot \rangle is the inner product associated with W. Therefore, P and I - P are orthogonal projections. The other direction, namely that if P is orthogonal then it is self-adjoint, follows from \langle \mathbf x, P \mathbf y \rangle = \langle P \mathbf x, \mathbf y \rangle = \langle \mathbf x, P^* \mathbf y \rangle for every x and y in W; thus P=P^*.


Properties and special cases

An orthogonal projection is a bounded operator. This is because for every \mathbf v in the vector space we have, by the
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is considered one of the most important and widely used inequalities in mathematics. The inequality for sums was published by . The corresponding inequality fo ...
: \left \, P \mathbf v\right\, ^2 = \langle P \mathbf v, P \mathbf v \rangle = \langle P \mathbf v, \mathbf v \rangle \leq \left\, P \mathbf v\right\, \cdot \left\, \mathbf v\right\, Thus \left\, P \mathbf v\right\, \leq \left\, \mathbf v\right\, . For finite-dimensional complex or real vector spaces, the
standard inner product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algeb ...
can be substituted for \langle \cdot, \cdot \rangle.


=Formulas

= A simple case occurs when the orthogonal projection is onto a line. If \mathbf u is a unit vector on the line, then the projection is given by the
outer product In linear algebra, the outer product of two coordinate vector In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An ea ...
P_\mathbf = \mathbf u \mathbf u^\mathsf. (If \mathbf u is complex-valued, the transpose in the above equation is replaced by a Hermitian transpose). This operator leaves u invariant, and it annihilates all vectors orthogonal to \mathbf u, proving that it is indeed the orthogonal projection onto the line containing u. A simple way to see this is to consider an arbitrary vector \mathbf x as the sum of a component on the line (i.e. the projected vector we seek) and another perpendicular to it, \mathbf x = \mathbf x_\parallel + \mathbf x_\perp. Applying projection, we get P_ \mathbf x = \mathbf u \mathbf u^\mathsf \mathbf x_\parallel + \mathbf u \mathbf u^\mathsf \mathbf x_\perp = \mathbf u \left( \sgn\left(\mathbf u^\mathsf \mathbf x_\parallel\right) \left \, \mathbf x_\parallel \right \, \right) + \mathbf u \cdot \mathbf 0 = \mathbf x_\parallel by the properties of the dot product of parallel and perpendicular vectors. This formula can be generalized to orthogonal projections on a subspace of arbitrary dimension. Let \mathbf u_1, \ldots, \mathbf u_k be an orthonormal basis of the subspace U, with the assumption that the integer k \geq 1, and let A denote the n \times k matrix whose columns are \mathbf u_1, \ldots, \mathbf u_k, i.e., A = \begin \mathbf u_1 & \cdots & \mathbf u_k \end. Then the projection is given by: P_A = A A^\mathsf which can be rewritten as P_A = \sum_i \langle \mathbf u_i, \cdot \rangle \mathbf u_i. The matrix A^\mathsf is the partial isometry that vanishes on the orthogonal complement of U and A is the isometry that embeds U into the underlying vector space. The range of P_A is therefore the ''final space'' of A. It is also clear that A A^ is the identity operator on U. The orthonormality condition can also be dropped. If \mathbf u_1, \ldots, \mathbf u_k is a (not necessarily orthonormal) basis with k \geq 1, and A is the matrix with these vectors as columns, then the projection is: P_A = A \left(A^\mathsf A\right)^ A^\mathsf. The matrix A still embeds U into the underlying vector space but is no longer an isometry in general. The matrix \left(A^\mathsfA\right)^ is a "normalizing factor" that recovers the norm. For example, the rank-1 operator \mathbf u \mathbf u^\mathsf is not a projection if \left\, \mathbf u \right\, \neq 1. After dividing by \mathbf u^\mathsf \mathbf u = \left\, \mathbf u \right\, ^2, we obtain the projection \mathbf u \left(\mathbf u^\mathsf \mathbf u \right)^ \mathbf u^\mathsf onto the subspace spanned by u. In the general case, we can have an arbitrary
positive definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite f ...
matrix D defining an inner product \langle x, y \rangle_D = y^\dagger Dx, and the projection P_A is given by P_A x = \operatorname_ \left\, x - y\right\, ^2_D. Then P_A = A \left(A^\mathsf D A\right)^ A^\mathsf D. When the range space of the projection is generated by a frame (i.e. the number of generators is greater than its dimension), the formula for the projection takes the form: P_A = A A^+. Here A^+ stands for the Moore–Penrose pseudoinverse. This is just one of many ways to construct the projection operator. If \begin A & B \end is a non-singular matrix and A^\mathsfB = 0 (i.e., B is the null space matrix of A), the following holds: \begin I &= \begin A & B \end \begin A & B \end^\begin A^\mathsf \\ B^\mathsf \end^ \begin A^\mathsf \\ B^\mathsf \end \\ &= \begin A & B \end \left( \begin A^\mathsf \\ B^\mathsf \end \begin A & B \end \right )^ \begin A^\mathsf \\B^\mathsf \end \\ &= \begin A & B \end \beginA^\mathsfA&O\\O&B^\mathsfB\end^ \begin A^\mathsf \\ B^\mathsf \end\\ pt &= A \left(A^\mathsfA\right)^ A^\mathsf + B \left(B^\mathsfB\right)^ B^\mathsf \end If the orthogonal condition is enhanced to A^\mathsfW B = A^\mathsfW^\mathsfB = 0 with W non-singular, the following holds: I = \beginA & B\end \begin\left(A^\mathsf W A\right)^ A^\mathsf \\ \left(B^\mathsf W B\right)^ B^\mathsf \end W. All these formulas also hold for complex inner product spaces, provided that the conjugate transpose is used instead of the transpose. Further details on sums of projectors can be found in Banerjee and Roy (2014). Also see Banerjee (2004) for application of sums of projectors in basic spherical trigonometry.


Oblique projections

The term ''oblique projections'' is sometimes used to refer to non-orthogonal projections. These projections are also used to represent spatial figures in two-dimensional drawings (see oblique projection), though not as frequently as orthogonal projections. Whereas calculating the fitted value of an
ordinary least squares In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the prin ...
regression requires an orthogonal projection, calculating the fitted value of an instrumental variables regression requires an oblique projection. Projections are defined by their null space and the basis vectors used to characterize their range (which is the complement of the null space). When these basis vectors are orthogonal to the null space, then the projection is an orthogonal projection. When these basis vectors are not orthogonal to the null space, the projection is an oblique projection, or just a general projection.


A matrix representation formula for a nonzero projection operator

Let P be a linear operator P : V \to V such that P^2 = P and assume that P : V \to V is not the zero operator. Let the vectors \mathbf u_1, \ldots, \mathbf u_k form a basis for the range of the projection, and assemble these vectors in the n \times k matrix A. Therefore the integer k \geq 1, otherwise k = 0 and P is the zero operator. The range and the null space are complementary spaces, so the null space has dimension n - k. It follows that the orthogonal complement of the null space has dimension k. Let \mathbf v_1, \ldots, \mathbf v_k form a basis for the orthogonal complement of the null space of the projection, and assemble these vectors in the matrix B. Then the projection P (with the condition k \geq 1) is given by P = A \left(B^\mathsf A\right)^ B^\mathsf. This expression generalizes the formula for orthogonal projections given above. A standard proof of this expression is the following. For any vector \mathbf x in the vector space V, we can decompose \mathbf = \mathbf_1 + \mathbf_2, where vector \mathbf_1 = P(\mathbf) is in the image of P, and vector \mathbf_2 = \mathbf - P(\mathbf). So P(\mathbf_2) = P(\mathbf) - P^2(\mathbf)= \mathbf, and then \mathbf_2 is in the null space of P. In other words, the vector \mathbf_1 is in the column space of A, so \mathbf_1 = A \mathbf for some k dimension vector \mathbf and the vector \mathbf_2 satisfies B^\mathsf \mathbf_2=\mathbf by the construction of B. Put these conditions together, and we find a vector \mathbf so that B^\mathsf (\mathbf-A\mathbf)=\mathbf. Since matrices A and B are of full rank k by their construction, the k\times k-matrix B^\mathsf A is invertible. So the equation B^\mathsf (\mathbf-A\mathbf)=\mathbf gives the vector \mathbf= (B^A)^ B^ \mathbf. In this way, P\mathbf = \mathbf_1 = A\mathbf= A(B^A)^ B^ \mathbf for any vector \mathbf \in V and hence P = A(B^A)^ B^. In the case that P is an orthogonal projection, we can take A = B, and it follows that P=A \left(A^\mathsf A\right)^ A^\mathsf. By using this formula, one can easily check that P=P^\mathsf. In general, if the vector space is over complex number field, one then uses the Hermitian transpose A^* and has the formula P=A \left(A^* A\right)^ A^*. Recall that one can define the Moore–Penrose inverse of the matrix A by A^= (A^*A)^A^* since A has full column rank, so P=A A^.


Singular Values

Note that I-P is also an oblique projection. The singular values of P and I-P can be computed by an orthonormal basis of A. Let Q_A be an orthonormal basis of A and let Q_A^ be the orthogonal complement of Q_A. Denote the singular values of the matrix Q_A^T A (B^T A)^ B^T Q_A^ by the positive values \gamma_1 \ge \gamma_2 \ge \ldots \ge \gamma_k . With this, the singular values for P are: \sigma_i = \begin \sqrt & 1 \le i \le k \\ 0 & \text \end and the singular values for I-P are \sigma_i = \begin \sqrt & 1 \le i \le k \\ 1 & k+1 \le i \le n-k \\ 0 & \text \end This implies that the largest singular values of P and I-P are equal, and thus that the matrix norm of the oblique projections are the same. However, the
condition number In numerical analysis, the condition number of a function measures how much the output value of the function can change for a small change in the input argument. This is used to measure how sensitive a function is to changes or errors in the input ...
satisfies the relation \kappa(I-P) = \frac \ge \frac = \kappa(P), and is therefore not necessarily equal.


Finding projection with an inner product

Let V be a vector space (in this case a plane) spanned by orthogonal vectors \mathbf u_1, \mathbf u_2, \dots, \mathbf u_p. Let y be a vector. One can define a projection of \mathbf y onto V as \operatorname_V \mathbf y = \frac \mathbf u^i where repeated indices are summed over ( Einstein sum notation). The vector \mathbf y can be written as an orthogonal sum such that \mathbf y = \operatorname_V \mathbf y + \mathbf z. \operatorname_V \mathbf y is sometimes denoted as \hat. There is a theorem in linear algebra that states that this \mathbf z is the smallest distance (the '' orthogonal distance'') from \mathbf y to V and is commonly used in areas such as machine learning.


Canonical forms

Any projection P=P^2 on a vector space of dimension d over a field is a diagonalizable matrix, since its minimal polynomial divides x^2-x, which splits into distinct linear factors. Thus there exists a basis in which P has the form :P = I_r\oplus 0_ where r is the rank of P. Here I_r is the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial o ...
of size r, and 0_ is the zero matrix of size d-r. If the vector space is complex and equipped with an inner product, then there is an ''orthonormal'' basis in which the matrix of ''P'' is :P = \begin1&\sigma_1 \\ 0&0\end \oplus \cdots \oplus \begin1&\sigma_k \\ 0&0\end \oplus I_m \oplus 0_s. where \sigma_1 \geq \sigma_2\geq \dots \geq \sigma_k > 0. The integers k,s,m and the real numbers \sigma_i are uniquely determined. Note that 2k+s+m=d. The factor I_m \oplus 0_s corresponds to the maximal invariant subspace on which P acts as an ''orthogonal'' projection (so that ''P'' itself is orthogonal if and only if k=0) and the \sigma_i-blocks correspond to the ''oblique'' components.


Projections on normed vector spaces

When the underlying vector space X is a (not necessarily finite-dimensional) normed vector space, analytic questions, irrelevant in the finite-dimensional case, need to be considered. Assume now X is a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
. Many of the algebraic results discussed above survive the passage to this context. A given direct sum decomposition of X into complementary subspaces still specifies a projection, and vice versa. If X is the direct sum X = U \oplus V, then the operator defined by P(u+v) = u is still a projection with range U and kernel V. It is also clear that P^2 = P. Conversely, if P is projection on X, i.e. P^2 = P, then it is easily verified that (1-P)^2 = (1-P). In other words, 1 - P is also a projection. The relation P^2 = P implies 1 = P + (1-P) and X is the direct sum \operatorname(P) \oplus \operatorname(1 - P). However, in contrast to the finite-dimensional case, projections need not be continuous in general. If a subspace U of X is not closed in the norm topology, then the projection onto U is not continuous. In other words, the range of a continuous projection P must be a closed subspace. Furthermore, the kernel of a continuous projection (in fact, a continuous linear operator in general) is closed. Thus a ''continuous'' projection P gives a decomposition of X into two complementary ''closed'' subspaces: X = \operatorname(P) \oplus \ker(P) = \ker(1-P) \oplus \ker(P). The converse holds also, with an additional assumption. Suppose U is a closed subspace of X. If there exists a closed subspace V such that , then the projection P with range U and kernel V is continuous. This follows from the closed graph theorem. Suppose and . One needs to show that Px=y. Since U is closed and , ''y'' lies in U, i.e. . Also, . Because V is closed and , we have x-y \in V, i.e. P(x-y)=Px-Py=Px-y=0, which proves the claim. The above argument makes use of the assumption that both U and V are closed. In general, given a closed subspace U, there need not exist a complementary closed subspace V, although for
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s this can always be done by taking the orthogonal complement. For Banach spaces, a one-dimensional subspace always has a closed complementary subspace. This is an immediate consequence of Hahn–Banach theorem. Let U be the linear span of u. By Hahn–Banach, there exists a bounded linear functional \varphi such that . The operator P(x)=\varphi(x)u satisfies P^2=P, i.e. it is a projection. Boundedness of \varphi implies continuity of P and therefore \ker(P) = \operatorname(I-P) is a closed complementary subspace of U.


Applications and further considerations

Projections (orthogonal and otherwise) play a major role in algorithms for certain linear algebra problems: * QR decomposition (see Householder transformation and Gram–Schmidt decomposition); * Singular value decomposition * Reduction to Hessenberg form (the first step in many eigenvalue algorithms) *
Linear regression In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is call ...
* Projective elements of matrix algebras are used in the construction of certain K-groups in
Operator K-theory In mathematics, operator K-theory is a noncommutative analogue of topological K-theory for Banach algebras with most applications used for C*-algebras. Overview Operator K-theory resembles topological K-theory more than algebraic K-theory. In pa ...
As stated above, projections are a special case of idempotents. Analytically, orthogonal projections are non-commutative generalizations of characteristic functions. Idempotents are used in classifying, for instance, semisimple algebras, while
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
begins with considering characteristic functions of measurable sets. Therefore, as one can imagine, projections are very often encountered in the context of operator algebras. In particular, a von Neumann algebra is generated by its complete lattice of projections.


Generalizations

More generally, given a map between normed vector spaces T\colon V \to W, one can analogously ask for this map to be an isometry on the orthogonal complement of the kernel: that (\ker T)^\perp \to W be an isometry (compare Partial isometry); in particular it must be onto. The case of an orthogonal projection is when ''W'' is a subspace of ''V.'' In Riemannian geometry, this is used in the definition of a Riemannian submersion.


See also

* Centering matrix, which is an example of a projection matrix. *
Dykstra's projection algorithm Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method (also called the projections onto convex sets method). In its simplest form, the method finds a point ...
to compute the projection onto an intersection of sets * Invariant subspace * Least-squares spectral analysis * Orthogonalization * Properties of trace


Notes


References

* * *


External links

* , from MIT OpenCourseWare * , by
Pavel Grinfeld Pavel Grinfeld (also known as Greenfield) is an American mathematician and associate professor of Applied Mathematics at Drexel University working on problems in moving surfaces in applied mathematics (particularly calculus of variations), geom ...
.
Planar Geometric Projections Tutorial
– a simple-to-follow tutorial explaining the different types of planar geometric projections. {{linear algebra Functional analysis Linear algebra Linear operators