HOME





Moore–Penrose Inverse
In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. The terms ''pseudoinverse'' and ''generalized inverse'' are sometimes used as synonyms for the Moore–Penrose inverse of a matrix, but sometimes applied to other elements of algebraic structures which share some but not all properties expected for an inverse element. A common use of the pseudoinverse is to compute a "best fit" ( least squares) approximate solution to a system of linear equations that lacks an exact solution (see below under § Applications). Another use is to find the minimum ( Euclidean) norm solution to a system of linear equations with multiple solutions. The pseu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : A \text \quad \iff \quad a_ = \overline or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as A \text \quad \iff \quad A = A^\mathsf Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although in quantum mechanics, A^\ast typically means the complex conjugate onl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Inverse
In mathematics, the term weak inverse is used with several meanings. Theory of semigroups In the theory of semigroups, a weak inverse of an element ''x'' in a semigroup is an element ''y'' such that . If every element has a weak inverse, the semigroup is called an ''E''-inversive or ''E''-dense semigroup. An ''E''-inversive semigroup may equivalently be defined by requiring that for every element , there exists such that and are idempotents. An element ''x'' of ''S'' for which there is an element ''y'' of ''S'' such that is called regular. A regular semigroup is a semigroup in which every element is regular. This is a stronger notion than weak inverse. Every regular semigroup is ''E''-inversive, but not vice versa. If every element ''x'' in ''S'' has a unique inverse ''y'' in ''S'' in the sense that and then ''S'' is called an inverse semigroup. Category theory In category theory, a weak inverse of an object ''A'' in a monoidal category ''C'' with monoidal product ⊗ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each Element (mathematics), element of a given subset A of its Domain of a function, domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general Binary relation#Operations, binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a Function (mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Column Space
In linear algebra, the column space (also called the range or image) of a matrix ''A'' is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation. Let F be a field. The column space of an matrix with components from F is a linear subspace of the ''m''-space F^m. The dimension of the column space is called the rank of the matrix and is at most .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang 2005. A definition for matrices over a ring R is also possible. The row space is defined similarly. The row space and the column space of a matrix are sometimes denoted as and respectively. This article considers matrices of real numbers. The row and column spaces are subspaces of the real sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Range Of A Function
In mathematics, the range of a function may refer either to the codomain of the function, or the image of the function. In some cases the codomain and the image of a function are the same set; such a function is called ''surjective'' or ''onto''. For any non-surjective function f: X \to Y, the codomain Y and the image \tilde Y are different; however, a new function can be defined with the original function's image as its codomain, \tilde: X \to \tilde where \tilde(x) = f(x). This new function is surjective. Definitions Given two sets and , a binary relation between and is a function (from to ) if for every element in there is exactly one in such that relates to . The sets and are called the '' domain'' and ''codomain'' of , respectively. The ''image'' of the function is the subset of consisting of only those elements of such that there is at least one in with . Usage As the term "range" can have different meanings, it is considered a good practice to define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conjugate Transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate of a+ib being a-ib, for real numbers a and b). There are several notations, such as \mathbf^\mathrm or \mathbf^*, \mathbf', or (often in physics) \mathbf^. For real matrices, the conjugate transpose is just the transpose, \mathbf^\mathrm = \mathbf^\operatorname. Definition The conjugate transpose of an m \times n matrix \mathbf is formally defined by where the subscript ij denotes the (i,j)-th entry (matrix element), for 1 \le i \le n and 1 \le j \le m, and the overbar denotes a scalar complex conjugate. This definition can also be written as :\mathbf^\mathrm = \left(\overline\right)^\operatorname = \overline where \mathbf^\operatorname denotes the transpose and \overline denotes the matrix with complex conjugated entries. Other na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Complement
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W^\perp of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V. Example Let V = (\R^5, \langle \cdot, \cdot \rangle) be the vector space equipped with the usual dot product \langle \cdot, \cdot \rangle (thus making it an inner product space), and let W = \, with \mathbf = \begin 1 & 0\\ 0 & 1\\ 2 & 6\\ 3 & 9\\ 5 & 3\\ \end. then its orthogonal complement W^\perp = \ can also be defined as W^\perp = \, being \mathbf = \begin -2 & -3 & -5 \\ -6 & -9 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end. The fact that every column vector in \mathbf is orthogonal to every column vector in \mathbf can be checked by direct computation. The fact that the spans of these vectors are orthogonal then follows by bilinearity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (linear Algebra)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]