Predictive Probability Of Success
   HOME

TheInfoList



OR:

Predictive probability of success (PPOS) is a statistics concept commonly used in the
pharmaceutical industry The pharmaceutical industry is a medical industry that discovers, develops, produces, and markets pharmaceutical goods such as medications and medical devices. Medications are then administered to (or self-administered by) patients for curing ...
including by health authorities to support
decision making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either ra ...
. In
clinical trials Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel v ...
, PPOS is the probability of observing a success in the future based on existing data. It is one type of
probability of success The probability of success (POS) is a statistics concept commonly used in the pharmaceutical industry including by health authorities to support decision making. The probability of success is a concept closely related to conditional power and pr ...
. A
Bayesian Thomas Bayes ( ; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian ( or ) may be either any of a range of concepts and approaches that relate to statistical methods based on Bayes' theorem Bayes ...
means by which the PPOS can be determined is through integrating the data's
likelihood A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the j ...
over possible future responses (posterior distribution).


Types of PPOS

* Classification based on type of end point: Normal, binary, time to event. * Classification based on the relationship between the trial providing data and the trial to be predicted # Cross trial PPOS: using data from one trial to predict the other trial # Within trial PPOS: using data at interim analysis to predict the same trial at final analysis * Classification based on the relationship between the end point(s) with data and the end point to be predicted # 1 to 1 PPOS: using one end point to predict the same end point # 1 to 1* PPOS: using one end point to predict another different but correlated end point


Relationship with conditional power and predictive power

Conditional power is the probability of observing a statistically significance assuming the parameter equals to a specific value. More specifically, these parameters could be treatment and placebo event rates that could be fixed in future observations. This is a
frequentist Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or pro ...
statistical power In frequentist statistics, power is the probability of detecting a given effect (if that effect actually exists) using a given test in a given context. In typical use, it is a function of the specific test that is used (including the choice of tes ...
. Conditional power is often criticized for assuming the parameter equals to a specific value which is not known to be true. If the true value of the parameter is known, there is no need to do an experiment. Predictive power addresses this issue assuming the parameter has a specific distribution. Predictive power is a
Bayesian Thomas Bayes ( ; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian ( or ) may be either any of a range of concepts and approaches that relate to statistical methods based on Bayes' theorem Bayes ...
power. A parameter in Bayesian setting is a random variable. Predictive power is a function of a parameter(s), therefore predictive power is also a variable. Both conditional power and predictive power use statistical significance as success criteria. However statistical significance is often not enough to define success. For example, health authorities often require the magnitude of treatment effect to be bigger than statistical significance to support a registration decision. To address this issue, predictive power can be extended to the concept of PPOS. The success criteria for PPOS is not restricted to statistical significance. It can be something else such as clinical meaningful results. PPOS is conditional probability conditioned on a random variable, therefore it is also a random variable. The observed value is just a realization of the random variable.


Relationship with posterior probability of success

Posterior probability of success is calculated from posterior distribution. PPOS is calculated from predictive distribution. Posterior distribution is the summary of uncertainties about the parameter. Predictive distribution has not only the uncertainty about parameter but also the uncertainty about estimating parameter using data. Posterior distribution and predictive distribution have same mean, but former has smaller variance.


Common issues in current practice of PPOS

PPOS is a conditional probability conditioned on randomly observed data and hence is a random variable itself. Currently common practice of PPOS uses only its point estimate in applications. This can be misleading. For a variable, the amount of uncertainty is an important part of the story. To address this issue, Tang introduced PPOS
credible interval In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experime ...
to quantify the amount of its uncertainty. Tang advocates to use both PPOS point estimate and
credible interval In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experime ...
in applications such as
decision making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either ra ...
and
clinical trial Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel v ...
designs. Another common issue is the mixed use of posterior probability of success and PPOS. As described in the previous section, the 2 statistics are measured in 2 different metrics, comparing them is like comparing
apples and oranges A comparison of apples and oranges occurs when two items or groups of items are compared that cannot be practically compared, typically because of inherent or fundamental differences between the objects. The idiom, ''comparing apples and oran ...
.


Applications in

clinical trial Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel v ...
design

PPOS can be used to design futility interim for a big confirmatory trials or pilot trials.


Pilot trial design using PPOS

Traditional pilot trial design is typically done by controlling
type I error Type I error, or a false positive, is the erroneous rejection of a true null hypothesis in statistical hypothesis testing. A type II error, or a false negative, is the erroneous failure in bringing about appropriate rejection of a false null hy ...
rate and power for detecting a specific parameter value. The goal of a pilot trials such as a phase II trial is usually not to support registration. Therefore, it doesn't make sense to control type I error rate especially a big type I error as typically done in a phase II trial. A pilot trial usually provides evidence to support a Go/No Go decision for a confirmatory trial. Therefore, it makes more sense to design a trial based on PPOS. To support a No/Go decision, traditional methods require the PPOS to be small. However the PPOS can be small just due to chance. To solve this issue, we can require the PPOS credible interval to be tight such that the PPOS calculation is supported by sufficient information and hence PPOS is not small just due to chance. Finding an optimal design is equivalent to find the solution to the following 2 equations. # PPOS=PPOS1 # upper bound of PPOS credible interval=PPOS2 where PPOS1 and PPOS2 are some user-defined cutoff values. The first equation ensures that the PPOS is small such that not too many trials will be prevented entering next stage to guard against
false negative A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test resu ...
. The first equation also ensures that the PPOS is not too small such that not too many trials will enter the next stage to guard against
false positive A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test resu ...
. The second equation ensures that the PPOS
credible interval In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experime ...
is tight such that the PPOS calculation is supported by sufficient information. The second equation also ensures that the PPOS
credible interval In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experime ...
is not too tight such that it won't demand too much resource.


Futility interim design using PPOS

PPOS can also be used in
Interim analysis In clinical trials and other scientific studies, an interim analysis is an analysis of data that is conducted before data collection has been completed. Clinical trials are unusual in that enrollment of subjects is a continual process staggered in ...
to determine whether a clinical trial should be continued. PPOS can be used for this purpose because its value can be used to indicate if there is enough convincing evidence to either reject or fail to reject the null hypothesis with the presently available data. PPOS can also be used in the assessment of futility. Futility is when a clinical trial does not show signs of reaching its objective (i.e. providing enough to make a conclusion about the null). Traditional futility interim is designed based on beta spending. However beta spending doesn't have intuitive interpretation. Therefore, it is difficult to communicate with non-statistician colleagues. Since PPOS has intuitive interpretation, it makes more sense to design futility interim using PPOS. To declare futility, we mandate the PPOS to be small and PPOS calculation is supported by sufficient information. Finding the optimal design is equivalent to solving the following 2 equations. # PPOS=PPOS1 # upper bound of PPOS credible interval=PPOS2


Calculating PPOS using simulations

In interim analysis, Predictive Probability of Success can also be calculated through the use of simulations through the following method: # Sample the parameter of interest from the posterior distribution attained from the currently available set of data # Complete the dataset by sampling from the predictive distribution which holds values not yet observed in the data under interim analysis # Use the newly completed dataset to calculate criteria used to calculate success which could be things like p-values, posterior probabilities, etc. This can then be used to categorized if a trial was a success or not. # These three steps then get repeated a total of ''n'' number of times. The PPOS is determined by getting the proportion of trials that were successes in the dataset. Using simulation to calculate PPOS makes it possible to test statistics with complex distributions since it alleviates the computing complexity that would otherwise be required.


References

{{Reflist Pharmaceutical statistics