The power spectrum
of a
time series
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Exa ...
describes the distribution of
power
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power
* Power (social and political), the ability to influence people or events
** Abusive power
Power may a ...
into frequency components composing that signal.
According to
Fourier analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal (including
noise
Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arise ...
) as analyzed in terms of its frequency content, is called its
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
.
When the energy of the signal is concentrated around a finite time interval, especially if its total energy is finite, one may compute the energy spectral density. More commonly used is the power spectral density (or simply power spectrum), which applies to signals existing over ''all'' time, or over a time period large enough (especially in relation to the duration of a measurement) that it could as well have been over an infinite time interval. The power spectral density (PSD) then refers to the spectral energy distribution that would be found per unit time, since the total energy of such a signal over all time would generally be infinite.
Summation
In mathematics, summation is the addition of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, mat ...
or integration of the spectral components yields the total power (for a physical process) or variance (in a statistical process), identical to what would be obtained by integrating
over the time domain, as dictated by
Parseval's theorem
In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates ...
.
The spectrum of a physical process
often contains essential information about the nature of
. For instance, the
pitch and
timbre
In music, timbre ( ), also known as tone color or tone quality (from psychoacoustics), is the perceived sound quality of a musical note, sound or musical tone, tone. Timbre distinguishes different types of sound production, such as choir voice ...
of a musical instrument are immediately determined from a spectral analysis. The
color
Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
of a light source is determined by the spectrum of the electromagnetic wave's electric field
as it fluctuates at an extremely high frequency. Obtaining a spectrum from time series such as these involves the
Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
, and generalizations based on Fourier analysis. In many cases the time domain is not specifically employed in practice, such as when a
dispersive prism
In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at di ...
is used to obtain a spectrum of light in a
spectrograph
An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
, or when a sound is perceived through its effect on the auditory receptors of the inner ear, each of which is sensitive to a particular frequency.
However this article concentrates on situations in which the time series is known (at least in a statistical sense) or directly measured (such as by a microphone sampled by a computer). The power spectrum is important in
statistical signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, di ...
and in the statistical study of
stochastic process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
es, as well as in many other branches of
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and
engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
. Typically the process is a function of time, but one can similarly discuss data in the spatial domain being decomposed in terms of
spatial frequency
In mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components (as determined by the Fourier tra ...
.
Explanation
Any signal that can be represented as a variable that varies in time has a corresponding frequency spectrum. This includes familiar entities such as
visible light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
(perceived as
color
Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
), musical notes (perceived as
pitch),
radio/TV (specified by their frequency, or sometimes
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
) and even the regular rotation of the earth. When these signals are viewed in the form of a frequency spectrum, certain aspects of the received signals or the underlying processes producing them are revealed. In some cases the frequency spectrum may include a distinct peak corresponding to a
sine wave
A sine wave, sinusoidal wave, or just sinusoid is a curve, mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph of a function, graph. It is a type of continuous wave and also a Smoothness, smooth p ...
component. And additionally there may be peaks corresponding to
harmonics
A harmonic is a wave with a frequency that is a positive integer multiple of the '' fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', ...
of a fundamental peak, indicating a periodic signal which is ''not'' simply sinusoidal. Or a continuous spectrum may show narrow frequency intervals which are strongly enhanced corresponding to resonances, or frequency intervals containing almost zero power as would be produced by a
notch filter
In signal processing, a band-stop filter or band-rejection filter is a filter that passes most frequencies unaltered, but attenuates those in a specific range to very low levels. It is the opposite of a band-pass filter. A notch filter is a ba ...
.
In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, the signal might be a wave, such as an
electromagnetic wave
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
, an
acoustic wave
Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensit ...
, or the vibration of a mechanism. The ''power spectral density'' (PSD) of the signal describes the
power
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power
* Power (social and political), the ability to influence people or events
** Abusive power
Power may a ...
present in the signal as a function of frequency, per unit frequency. Power spectral density is commonly expressed in
watt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s per
hertz
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that on ...
(W/Hz).
When a signal is defined in terms only of a
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
, for instance, there is no unique power associated with the stated amplitude. In this case "power" is simply reckoned in terms of the square of the signal, as this would always be ''proportional'' to the actual power delivered by that signal into a given
impedance. So one might use units of V
2 Hz
−1 for the PSD. ''Energy spectral density'' (ESD) would have units would be V
2 s Hz
−1, since
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
has units of power multiplied by time (e.g.,
watt-hour
A kilowatt-hour ( unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bi ...
).
In the general case, the units of PSD will be the ratio of units of variance per unit of frequency; so, for example, a series of displacement values (in meters) over time (in seconds) will have PSD in units of meters squared per hertz, m
2/Hz.
In the analysis of random
vibration
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic function, periodic, such as the motion of a pendulum ...
s, units of ''g''
2 Hz
−1 are frequently used for the PSD of
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
, where ''g'' denotes the
g-force
The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (not gram in mass measure ...
.
Mathematically, it is not necessary to assign physical dimensions to the signal or to the independent variable. In the following discussion the meaning of ''x(t)'' will remain unspecified, but the independent variable will be assumed to be that of time.
Definition
Energy spectral density
Energy spectral density describes how the
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
of a signal or a
time series
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Exa ...
is distributed with frequency. Here, the term
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
is used in the generalized sense of signal processing;
that is, the energy
of a signal
is:
:
The energy spectral density is most suitable for transients—that is, pulse-like signals—having a finite total energy. Finite or not,
Parseval's theorem
In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates ...
(or Plancherel's theorem) gives us an alternate expression for the energy of the signal:
:
where:
:
is the value of the
Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of
at
frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
(in
Hz). The theorem also holds true in the discrete-time cases. Since the integral on the right-hand side is the energy of the signal, the value of
can be interpreted as a
density function
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can ...
multiplied by an infinitesimally small frequency interval, describing the energy contained in the signal at frequency
in the frequency interval
.
Therefore, the energy spectral density of
is defined as:
The function
and the
autocorrelation
Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable ...
of
form a Fourier transform pair, a result also known as the
Wiener–Khinchin theorem
In applied mathematics, the Wiener–Khinchin theorem or Wiener–Khintchine theorem, also known as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem, states that the autocorrelation function of a wide-sense-stationary ...
(see also
Periodogram In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods (see spectral estimation). It is the most ...
).
As a physical example of how one might measure the energy spectral density of a signal, suppose
represents the
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple re ...
(in
volt
The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827).
Defi ...
s) of an electrical pulse propagating along a
transmission line
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
of
impedance , and suppose the line is terminated with a
matched resistor (so that all of the pulse energy is delivered to the resistor and none is reflected back). By
Ohm's law
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equat ...
, the power delivered to the resistor at time
is equal to
, so the total energy is found by integrating
with respect to time over the duration of the pulse. To find the value of the energy spectral density
at frequency
, one could insert between the transmission line and the resistor a
bandpass filter
A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects ( attenuates) frequencies outside that range.
Description
In electronics and signal processing, a filter is usually a two-p ...
which passes only a narrow range of frequencies (
, say) near the frequency of interest and then measure the total energy
dissipated across the resistor. The value of the energy spectral density at
is then estimated to be
. In this example, since the power
has units of V
2 Ω
−1, the energy
has units of V
2 s Ω
−1 = J, and hence the estimate
of the energy spectral density has units of J Hz
−1, as required. In many situations, it is common to forget the step of dividing by
so that the energy spectral density instead has units of V
2 Hz
−2.
This definition generalizes in a straightforward manner to a discrete signal with a countably infinite number of values
such as a signal sampled at discrete times
:
:
where
is the
discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values.
The DTFT is often used to analyze samples of a continuous function. The term ''discrete-time'' refers to the ...
of
The sampling interval
is needed to keep the correct physical units and to ensure that we recover the continuous case in the limit
But in the mathematical sciences the interval is often set to 1, which simplifies the results at the expense of generality. (also see
normalized frequency)
Power spectral density
The above definition of energy spectral density is suitable for transients (pulse-like signals) whose energy is concentrated around one time window; then the Fourier transforms of the signals generally exist. For continuous signals over all time, one must rather define the ''power spectral density'' (PSD) which exists for
stationary process
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Con ...
es; this describes how the
power
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power
* Power (social and political), the ability to influence people or events
** Abusive power
Power may a ...
of a signal or time series is distributed over frequency, as in the simple example given previously. Here, power can be the actual physical power, or more often, for convenience with abstract signals, is simply identified with the squared value of the signal. For example, statisticians study the
variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers ...
of a function over time
(or over another independent variable), and using an analogy with electrical signals (among other physical processes), it is customary to refer to it as the ''power spectrum'' even when there is no physical power involved. If one were to create a physical
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
source which followed
and applied it to the terminals of a one
ohm
Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm.
Ohm or OHM may also refer to:
People
* Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm''
* Germán Ohm (born 1936), Mexican boxer
* Jörg Ohm (b ...
resistor
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active el ...
, then indeed the instantaneous power dissipated in that resistor would be given by
watt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s.
The average power
of a signal
over all time is therefore given by the following time average, where the period
is centered about some arbitrary time
:
:
However, for the sake of dealing with the math that follows, it is more convenient to deal with time limits in the signal itself rather than time limits in the bounds of the integral. As such, we have an alternative representation of the average power, where
and
is unity within the arbitrary period and zero elsewhere.
:
Clearly in cases where the above expression for P is non-zero (even as T grows without bound) the integral itself must also grow without bound. That is the reason that we cannot use the energy spectral density itself, which ''is'' that diverging integral, in such cases.
In analyzing the frequency content of the signal
, one might like to compute the ordinary Fourier transform
; however, for many signals of interest the Fourier transform does not formally exist. Regardless,
Parseval's theorem
In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates ...
tells us that we can re-write the average power as follows.
:
Then the power spectral density is simply defined as the integrand above.
From here, we can also view
as the
Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of the time
convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions ( and ) that produces a third function (f*g) that expresses how the shape of one is ...
of
and
:
Now, if we divide the time convolution above by the period
and take the limit as
, it becomes the
autocorrelation
Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable ...
function of the non-windowed signal
, which is denoted as
, provided that
is
ergodic
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies tha ...
, which is true in most, but not all, practical cases..
:
From here we see, again assuming the ergodicity of
, that the power spectral density can be found as the Fourier transform of the autocorrelation function (
Wiener–Khinchin theorem
In applied mathematics, the Wiener–Khinchin theorem or Wiener–Khintchine theorem, also known as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem, states that the autocorrelation function of a wide-sense-stationary ...
).
Many authors use this equality to actually ''define'' the power spectral density.
The power of the signal in a given frequency band