HOME

TheInfoList



OR:

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a
rigorous Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as math ...
description of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. This mathematical formalism uses mainly a part of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
, especially
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s, which are a kind of
linear space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', can be added together and multiplied ("scaled") by numbers called ''scalars''. The operations of vector addition and sc ...
. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s ( ''L''2 space mainly), and
operators Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
on these spaces. In brief, values of physical
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s such as
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
were no longer considered as values of
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
s on
phase space The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
, but as
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s; more precisely as spectral values of linear
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another sp ...
s in Hilbert space. These formulations of quantum mechanics continue to be used today. At the heart of the description are ideas of ''
quantum state In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
'' and ''quantum observables'', which are radically different from those used in previous
models A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided int ...
of physical reality. While the mathematics permits calculation of many quantities that can be measured experimentally, there is a definite theoretical limit to values that can be simultaneously measured. This limitation was first elucidated by
Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
through a
thought experiment A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is ...
, and is represented mathematically in the new formalism by the non-commutativity of operators representing quantum observables. Prior to the development of quantum mechanics as a separate
theory A theory is a systematic and rational form of abstract thinking about a phenomenon, or the conclusions derived from such thinking. It involves contemplative and logical reasoning, often supported by processes such as observation, experimentation, ...
, the mathematics used in physics consisted mainly of formal
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, beginning with
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, and increasing in complexity up to
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s.
Probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
was used in
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
. Geometric intuition played a strong role in the first two and, accordingly, theories of relativity were formulated entirely in terms of differential geometric concepts. The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called
classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
, and in particular within the same mathematical structures. The most sophisticated example of this is the Sommerfeld–Wilson–Ishiwara quantization rule, which was formulated entirely on the classical
phase space The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
.


History of the formalism


The "old quantum theory" and the need for new mathematics

In the 1890s,
Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
was able to derive the blackbody spectrum, which was later used to avoid the classical
ultraviolet catastrophe The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century and early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of en ...
by making the unorthodox assumption that, in the interaction of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
with
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
, energy could only be exchanged in discrete units which he called quanta. Planck postulated a direct proportionality between the frequency of radiation and the quantum of energy at that frequency. The proportionality constant, , is now called the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
in his honor. In 1905,
Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
explained certain features of the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
by assuming that Planck's energy quanta were actual particles, which were later dubbed
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
. All of these developments were phenomenological and challenged the theoretical physics of the time. Bohr and Sommerfeld went on to modify
classical mechanics Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
in an attempt to deduce the
Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
from first principles. They proposed that, of all closed classical orbits traced by a mechanical system in its phase space, only the ones that enclosed an area which was a multiple of the Planck constant were actually allowed. The most sophisticated version of this formalism was the so-called Sommerfeld–Wilson–Ishiwara quantization. Although the Bohr model of the hydrogen atom could be explained in this way, the spectrum of the helium atom (classically an unsolvable 3-body problem) could not be predicted. The mathematical status of quantum theory remained uncertain for some time. In 1923, de Broglie proposed that
wave–particle duality Wave–particle duality is the concept in quantum mechanics that fundamental entities of the universe, like photons and electrons, exhibit particle or wave (physics), wave properties according to the experimental circumstances. It expresses the in ...
applied not only to photons but to electrons and every other physical system. The situation changed rapidly in the years 1925–1930, when working mathematical foundations were found through the groundbreaking work of
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
,
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
,
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
,
Pascual Jordan Ernst Pascual Jordan (; 18 October 1902 – 31 July 1980) was a German theoretical and mathematical physicist who made significant contributions to quantum mechanics and quantum field theory. He contributed much to the mathematical form of matri ...
, and the foundational work of
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
,
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
and
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
, and it became possible to unify several different approaches in terms of a fresh set of ideas. The physical interpretation of the theory was also clarified in these years after
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
discovered the uncertainty relations and
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
introduced the idea of complementarity.


The "new quantum theory"

Werner Heisenberg's
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum ...
was the first successful attempt at replicating the observed quantization of
atomic spectra Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectrosc ...
. Later in the same year, Schrödinger created his wave mechanics. Schrödinger's formalism was considered easier to understand, visualize and calculate as it led to differential equations, which physicists were already familiar with solving. Within a year, it was shown that the two theories were equivalent. Schrödinger himself initially did not understand the fundamental probabilistic nature of quantum mechanics, as he thought that the
absolute square In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square o ...
of the wave function of an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
should be interpreted as the
charge density In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
of an object smeared out over an extended, possibly infinite, volume of space. It was
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
who introduced the interpretation of the
absolute square In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square o ...
of the wave function as the probability distribution of the position of a ''pointlike'' object. Born's idea was soon taken over by Niels Bohr in Copenhagen who then became the "father" of the
Copenhagen interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretat ...
of quantum mechanics. Schrödinger's
wave function In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
can be seen to be closely related to the classical
Hamilton–Jacobi equation In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mecha ...
. The correspondence to classical mechanics was even more explicit, although somewhat more formal, in Heisenberg's matrix mechanics. In his PhD thesis project,
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
discovered that the equation for the operators in the Heisenberg representation, as it is now called, closely translates to classical equations for the dynamics of certain quantities in the Hamiltonian formalism of classical mechanics, when one expresses them through
Poisson bracket In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. Th ...
s, a procedure now known as
canonical quantization In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible. Historically, this was not quit ...
. Already before Schrödinger, the young postdoctoral fellow Werner Heisenberg invented his
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum ...
, which was the first correct quantum mechanics – the essential breakthrough. Heisenberg's matrix mechanics formulation was based on algebras of infinite matrices, a very radical formulation in light of the mathematics of classical physics, although he started from the index-terminology of the experimentalists of that time, not even aware that his "index-schemes" were matrices, as Born soon pointed out to him. In fact, in these early years,
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
was not generally popular with physicists in its present form. Although Schrödinger himself after a year proved the equivalence of his wave-mechanics and Heisenberg's matrix mechanics, the reconciliation of the two approaches and their modern abstraction as motions in Hilbert space is generally attributed to Paul Dirac, who wrote a lucid account in his 1930 classic '' The Principles of Quantum Mechanics''. He is the third, and possibly most important, pillar of that field (he soon was the only one to have discovered a relativistic generalization of the theory). In his above-mentioned account, he introduced the
bra–ket notation Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically de ...
, together with an abstract formulation in terms of the
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
used in functional analysis; he showed that Schrödinger's and Heisenberg's approaches were two different representations of the same theory, and found a third, most general one, which represented the dynamics of the system. His work was particularly fruitful in many types of generalizations of the field. The first complete mathematical formulation of this approach, known as the Dirac–von Neumann axioms, is generally credited to
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
's 1932 book '' Mathematical Foundations of Quantum Mechanics'', although
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
had already referred to Hilbert spaces (which he called ''unitary spaces'') in his 1927 classic paper and 1928 book. It was developed in parallel with a new approach to the mathematical
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical ...
based on linear operators rather than the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
s that were
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
's approach a generation earlier. Though theories of quantum mechanics continue to evolve to this day, there is a basic framework for the mathematical formulation of quantum mechanics which underlies most approaches and can be traced back to the mathematical work of John von Neumann. In other words, discussions about ''interpretation'' of the theory, and extensions to it, are now mostly conducted on the basis of shared assumptions about the mathematical foundations.


Later developments

The application of the new quantum theory to electromagnetism resulted in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, which was developed starting around 1930. Quantum field theory has driven the development of more sophisticated formulations of quantum mechanics, of which the ones presented here are simple special cases. *
Path integral formulation The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or ...
*
Phase-space formulation The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
of quantum mechanics &
geometric quantization In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a w ...
*
quantum field theory in curved spacetime In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed ...
*
axiomatic An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fi ...
, algebraic and
constructive quantum field theory In mathematical physics, constructive quantum field theory is the field devoted to showing that quantum field theory can be defined in terms of precise mathematical structures. This demonstration requires new mathematics, in a sense analogous to ...
*
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of contin ...
formalism * Generalized statistical model of quantum mechanics A related topic is the relationship to classical mechanics. Any new physical theory is supposed to reduce to successful old theories in some approximation. For quantum mechanics, this translates into the need to study the so-called classical limit of quantum mechanics. Also, as Bohr emphasized, human cognitive abilities and language are inextricably linked to the classical realm, and so classical descriptions are intuitively more accessible than quantum ones. In particular, quantization, namely the construction of a quantum theory whose classical limit is a given and known classical theory, becomes an important area of quantum physics in itself. Finally, some of the originators of quantum theory (notably Einstein and Schrödinger) were unhappy with what they thought were the philosophical implications of quantum mechanics. In particular, Einstein took the position that quantum mechanics must be incomplete, which motivated research into so-called hidden-variable theories. The issue of hidden variables has become in part an experimental issue with the help of
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
.


Postulates of quantum mechanics

A physical system is generally described by three basic ingredients:
states State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
;
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s; and dynamics (or law of
time evolution Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called ''stateful systems''). In this formulation, ''time'' is not required to be a continuous parameter, but may be discr ...
) or, more generally, a group of physical symmetries. A classical description can be given in a fairly direct way by a phase space
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
of mechanics: states are points in a phase space formulated by
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
, observables are real-valued functions on it, time evolution is given by a one-parameter
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
of symplectic transformations of the phase space, and physical symmetries are realized by symplectic transformations. A quantum description normally consists of a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
of states, observables are
self-adjoint operator In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
s on the space of states, time evolution is given by a
one-parameter group In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism :\varphi : \mathbb \rightarrow G from the real line \mathbb (as an additive group) to some other topological group G. If \varphi is in ...
of unitary transformations on the Hilbert space of states, and physical symmetries are realized by
unitary transformation In mathematics, a unitary transformation is a linear isomorphism that preserves the inner product: the inner product of two vectors before the transformation is equal to their inner product after the transformation. Formal definition More precise ...
s. (It is possible, to map this Hilbert-space picture to a phase space formulation, invertibly. See below.) The following summary of the mathematical framework of quantum mechanics can be partly traced back to the Dirac–von Neumann axioms.


Description of the state of a system

Each isolated physical system is associated with a (topologically) separable
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
with
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
. Separability is a mathematically convenient hypothesis, with the physical interpretation that the state is uniquely determined by countably many observations. Quantum states can be identified with
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es in , where two vectors (of length 1) represent the same state if they differ only by a
phase factor For any complex number written in polar form (such as ), the phase factor is the complex exponential (), where the variable is the ''phase'' of a wave or other periodic function. The phase factor is a unit complex number, i.e. a complex numbe ...
: , \psi_k \rangle \sim , \psi_l\rangle \;\; \Leftrightarrow \;\; , \psi_k \rangle = e^ , \psi_l\rangle, \quad\ \alpha\in\mathbb. As such, a quantum state is an element of a
projective Hilbert space In mathematics and the foundations of quantum mechanics, the projective Hilbert space or ray space \mathbf(H) of a complex Hilbert space H is the set of equivalence classes /math> of non-zero vectors v \in H, for the equivalence relation \sim on H ...
, conventionally termed a "ray". Accompanying Postulate I is the composite system postulate: In the presence of
quantum entanglement Quantum entanglement is the phenomenon where the quantum state of each Subatomic particle, particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance. The topic o ...
, the quantum state of the composite system cannot be factored as a tensor product of states of its local constituents; Instead, it is expressed as a sum, or
superposition In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ...
, of tensor products of states of component subsystems. A subsystem in an entangled composite system generally cannot be described by a state vector (or a ray), but instead is described by a
density operator In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while thos ...
; Such quantum state is known as a mixed state. The
density operator In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while thos ...
of a mixed state is a
trace class In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of tra ...
, nonnegative ( positive semi-definite)
self-adjoint In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a^*). Definition Let \mathcal be a *-algebra. An element a \in \mathcal is called self-adjoint if The set of self-adjoint elements ...
operator normalized to be of
trace Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album), by Nell Other uses in arts and entertainment * ...
1. In turn, any
density operator In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while thos ...
of a mixed state can be represented as a subsystem of a larger composite system in a pure state (see
purification theorem In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem justifies a puzzling aspect of mixed strategy Nash equilibria In game theory, the Nash equilibrium is the most commonly used solutio ...
). In the absence of quantum entanglement, the quantum state of the composite system is called a separable state. The density matrix of a bipartite system in a separable state can be expressed as \rho=\sum_k p_k \rho_1^k \otimes \rho_2^k , where \; \sum_k p_k = 1 . If there is only a single non-zero p_k, then the state can be expressed just as \rho = \rho_1 \otimes \rho_2 , and is called simply separable or product state.


Measurement on a system


Description of physical quantities

Physical observables are represented by
Hermitian {{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature me ...
matrices on . Since these operators are Hermitian, their
eigenvalues In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
are always real, and represent the possible outcomes/results from measuring the corresponding observable. If the spectrum of the observable is
discrete Discrete may refer to: *Discrete particle or quantum in physics, for example in quantum theory * Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit * Discrete group, ...
, then the possible results are ''quantized''.


Results of measurement

By spectral theory, we can associate a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
to the values of in any state . We can also show that the possible values of the observable in any state must belong to the
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of . The
expectation value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected va ...
(in the sense of probability theory) of the observable for the system in state represented by the unit vector ∈ ''H'' is \langle\psi, A, \psi\rangle. If we represent the state in the basis formed by the eigenvectors of , then the square of the modulus of the component attached to a given eigenvector is the probability of observing its corresponding eigenvalue. For a mixed state , the expected value of in the state is \operatorname(A\rho), and the probability of obtaining an eigenvalue a_n in a discrete, nondegenerate spectrum of the corresponding observable A is given by \mathbb P(a_n)=\operatorname(, a_n\rangle\langle a_n, \rho)=\langle a_n, \rho, a_n\rangle . If the eigenvalue a_n has degenerate, orthonormal eigenvectors \ , then the
projection operator In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
onto the eigensubspace can be defined as the identity operator in the eigensubspace: P_n=, a_\rangle\langle a_, +, a_\rangle\langle a_, + \dots + , a_\rangle\langle a_, , and then \mathbb P(a_n)=\operatorname(P_n\rho) . Postulates II.a and II.b are collectively known as the
Born rule The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a ...
of quantum mechanics.


Effect of measurement on the state

When a measurement is performed, only one result is obtained (according to some
interpretations of quantum mechanics An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily b ...
). This is modeled mathematically as the processing of additional information from the measurement, confining the probabilities of an immediate second measurement of the same observable. In the case of a discrete, non-degenerate spectrum, two sequential measurements of the same observable will always give the same value assuming the second immediately follows the first. Therefore, the state vector must change as a result of measurement, and ''collapse'' onto the eigensubspace associated with the eigenvalue measured. For a mixed state , after obtaining an eigenvalue a_n in a discrete, nondegenerate spectrum of the corresponding observable A , the updated state is given by \rho'=\frac . If the eigenvalue a_n has degenerate, orthonormal eigenvectors \ , then the
projection operator In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
onto the eigensubspace is P_n=, a_\rangle\langle a_, +, a_\rangle\langle a_, + \dots + , a_\rangle\langle a_, . Postulates II.c is sometimes called the "state update rule" or "collapse rule"; Together with the Born rule (Postulates II.a and II.b), they form a complete representation of
measurements Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared to ...
, and are sometimes collectively called the measurement postulate(s). Note that the
projection-valued measure In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
s (PVM) described in the measurement postulate(s) can be generalized to positive operator-valued measures (POVM), which is the most general kind of measurement in quantum mechanics. A POVM can be understood as the effect on a component subsystem when a PVM is performed on a larger, composite system (see Naimark's dilation theorem).


Time evolution of a system

The Schrödinger equation describes how a state vector evolves in time. Depending on the text, it may be derived from some other assumptions, motivated on heuristic grounds, or asserted as a postulate. Derivations include using the de Broglie relation between wavelength and momentum or path integrals. Equivalently, the time evolution postulate can be stated as: For a closed system in a mixed state , the time evolution is \rho(t)=U(t;t_0)\rho(t_0) U^\dagger(t;t_0). The evolution of an
open quantum system In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the ''environment'' or a ''bath''. In general, these interactions significantly change the dynamics of the system a ...
can be described by
quantum operation In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discusse ...
s (in an operator sum formalism) and quantum instruments, and generally does not have to be unitary.


Other implications of the postulates

* Physical symmetries act on the Hilbert space of quantum states unitarily or antiunitarily due to
Wigner's theorem Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on ...
(
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
is another matter entirely). * Density operators are those that are in the closure of the
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
of the one-dimensional orthogonal projectors. Conversely, one-dimensional orthogonal projectors are
extreme point In mathematics, an extreme point of a convex set S in a Real number, real or Complex number, complex vector space is a point in S that does not lie in any open line segment joining two points of S. The extreme points of a line segment are calle ...
s of the set of density operators. Physicists also call one-dimensional orthogonal projectors ''pure states'' and other density operators ''mixed states''. * One can in this formalism state Heisenberg's
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
and prove it as a theorem, although the exact historical sequence of events, concerning who derived what and under which framework, is the subject of historical investigations outside the scope of this article. Furthermore, to the postulates of quantum mechanics one should also add basic statements on the properties of
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
and Pauli's exclusion principle, see below.


Spin

In addition to their other properties, all particles possess a quantity called
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
, an ''intrinsic angular momentum''. Despite the name, particles do not literally spin around an axis, and quantum mechanical spin has no correspondence in classical physics. In the position representation, a spinless wavefunction has position and time as continuous variables, . For spin wavefunctions the spin is an additional discrete variable: , where takes the values; \sigma = -S \hbar , -(S-1) \hbar , \dots, 0, \dots ,+(S-1) \hbar ,+S \hbar \,. That is, the state of a single particle with spin is represented by a -component
spinor In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
of complex-valued wave functions. Two classes of particles with ''very different'' behaviour are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s which have integer spin (), and
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s possessing half-integer spin ().


Symmetrization postulate

In quantum mechanics, two particles can be distinguished from one another using two methods. By performing a measurement of intrinsic properties of each particle, particles of different types can be distinguished. Otherwise, if the particles are identical, their trajectories can be tracked which distinguishes the particles based on the locality of each particle. While the second method is permitted in classical mechanics, (i.e. all classical particles are treated with distinguishability), the same cannot be said for quantum mechanical particles since the process is infeasible due to the fundamental uncertainty principles that govern small scales. Hence the requirement of indistinguishability of quantum particles is presented by the symmetrization postulate. The postulate is applicable to a system of bosons or fermions, for example, in predicting the spectra of
helium atom A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong ...
. The postulate, explained in the following sections, can be stated as follows: Exceptions can occur when the particles are constrained to two spatial dimensions where existence of particles known as
anyon In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional physical system, systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical proper ...
s are possible which are said to have a continuum of statistical properties spanning the range between fermions and bosons. The connection between behaviour of identical particles and their spin is given by spin statistics theorem. It can be shown that two particles localized in different regions of space can still be represented using a symmetrized/antisymmetrized wavefunction and that independent treatment of these wavefunctions gives the same result. Hence the symmetrization postulate is applicable in the general case of a system of identical particles.


Exchange Degeneracy

In a system of identical particles, let ''P'' be known as exchange operator that acts on the wavefunction as: : P \bigg(\cdots, \psi\rang , \phi\rang \cdots\bigg) \equiv \cdots , \phi\rang , \psi\rang \cdots If a physical system of identical particles is given, wavefunction of all particles can be well known from observation but these cannot be labelled to each particle. Thus, the above exchanged wavefunction represents the same physical state as the original state which implies that the wavefunction is not unique. This is known as exchange degeneracy. More generally, consider a linear combination of such states, , \Psi\rangle . For the best representation of the physical system, we expect this to be an eigenvector of ''P'' since exchange operator is not excepted to give completely different vectors in projective Hilbert space. Since P^2 = 1, the possible eigenvalues of ''P'' are +1 and −1. The , \Psi\rangle states for identical particle system are represented as symmetric for +1 eigenvalue or antisymmetric for -1 eigenvalue as follows: : P, \cdots n_i,n_j \cdots; S\rang = + , \cdots n_i,n_j \cdots; S\rang : P, \cdots n_i, n_j \cdots; A\rang = - , \cdots n_i, n_j \cdots; A\rang The explicit symmetric/antisymmetric form of , \Psi\rangle is constructed using a symmetrizer or
antisymmetrizer In quantum mechanics, an antisymmetrizer \mathcal (also known as an antisymmetrizing operatorP.A.M. Dirac, ''The Principles of Quantum Mechanics'', 4th edition, Clarendon, Oxford UK, (1958) p. 248) is a linear operator that makes a wave function ...
operator. Particles that form symmetric states are called
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s and those that form antisymmetric states are called as fermions. The relation of spin with this classification is given from spin statistics theorem which shows that integer spin particles are bosons and half integer spin particles are fermions.


Pauli exclusion principle

The property of spin relates to another basic property concerning systems of identical particles: the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
, which is a consequence of the following permutation behaviour of an -particle wave function; again in the position representation one must postulate that for the transposition of any two of the particles one always should have i.e., on transposition of the arguments of any two particles the wavefunction should ''reproduce'', apart from a prefactor which is for bosons, but () for
fermions In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin ( spin , spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and ...
. Electrons are fermions with ; quanta of light are bosons with . Due to the form of anti-symmetrized wavefunction: : \Psi^_ (x_1, \ldots, x_N) = \frac \left, \begin \psi_(x_1) & \psi_(x_2) & \cdots & \psi_(x_N) \\ \psi_(x_1) & \psi_(x_2) & \cdots & \psi_(x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_(x_1) & \psi_(x_2) & \cdots & \psi_(x_N) \\ \end \ if the wavefunction of each particle is completely determined by a set of quantum number, then two fermions cannot share the same set of quantum numbers since the resulting function cannot be anti-symmetrized (i.e. above formula gives zero). The same cannot be said of Bosons since their wavefunction is: : , x_1 x_2 \cdots x_N; S \rangle = \frac \sum_p \left, x_\right\rangle \left, x_\right\rangle \cdots \left, x_\right\rangle where n_j is the number of particles with same wavefunction.


Exceptions for symmetrization postulate

In nonrelativistic quantum mechanics all particles are either bosons or
fermions In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin ( spin , spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and ...
; in relativistic quantum theories also "supersymmetric" theories exist, where a particle is a linear combination of a bosonic and a fermionic part. Only in dimension can one construct entities where is replaced by an arbitrary complex number with magnitude 1, called
anyon In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional physical system, systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical proper ...
s. In relativistic quantum mechanics, spin statistic theorem can prove that under certain set of assumptions that the integer spins particles are classified as bosons and half spin particles are classified as
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s. Anyons which form neither symmetric nor antisymmetric states are said to have fractional spin. Although ''spin'' and the ''Pauli principle'' can only be derived from relativistic generalizations of quantum mechanics, the properties mentioned in the last two paragraphs belong to the basic postulates already in the non-relativistic limit. Especially, many important properties in natural science, e.g. the
periodic system The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("Period (periodic table), periods") and columns ("Group (periodic table), groups"). It is an Cultural icon ...
of chemistry, are consequences of the two properties.


Mathematical structure of quantum mechanics


Pictures of dynamics

Summary:


Representations

The original form of the Schrödinger equation depends on choosing a particular representation of Heisenberg's
canonical commutation relations In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p ...
. The Stone–von Neumann theorem dictates that all irreducible representations of the finite-dimensional Heisenberg commutation relations are unitarily equivalent. A systematic understanding of its consequences has led to the phase space formulation of quantum mechanics, which works in full
phase space The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
instead of
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
, so then with a more intuitive link to the classical limit thereof. This picture also simplifies considerations of quantization, the deformation extension from classical to quantum mechanics. The
quantum harmonic oscillator The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, ...
is an exactly solvable system where the different representations are easily compared. There, apart from the Heisenberg, or Schrödinger (position or momentum), or phase-space representations, one also encounters the Fock (number) representation and the Segal–Bargmann (Fock-space or coherent state) representation (named after
Irving Segal Irving Ezra Segal (1918–1998) was an American mathematician known for work on theoretical quantum mechanics. He shares credit for what is often referred to as the Segal–Shale–Weil representation. Early in his career Segal became known for h ...
and
Valentine Bargmann Valentine "Valya" Bargmann (April 6, 1908 – July 20, 1989) was a German-American mathematician and theoretical physicist. Biography Born in Berlin, Germany, to a German Jewish The history of the Jews in Germany goes back at least to the y ...
). All four are unitarily equivalent.


Time as an operator

The framework presented so far singles out time as ''the'' parameter that everything depends on. It is possible to formulate mechanics in such a way that time becomes itself an observable associated with a self-adjoint operator. At the classical level, it is possible to arbitrarily parameterize the trajectories of particles in terms of an unphysical parameter , and in that case the time ''t'' becomes an additional generalized coordinate of the physical system. At the quantum level, translations in would be generated by a "Hamiltonian" , where ''E'' is the energy operator and is the "ordinary" Hamiltonian. However, since ''s'' is an unphysical parameter, ''physical'' states must be left invariant by "''s''-evolution", and so the physical state space is the kernel of (this requires the use of a
rigged Hilbert space In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study s ...
and a renormalization of the norm). This is related to the quantization of constrained systems and quantization of gauge theories. It is also possible to formulate a quantum theory of "events" where time becomes an observable.


Problem of measurement

The picture given in the preceding paragraphs is sufficient for description of a completely isolated system. However, it fails to account for one of the main differences between quantum mechanics and classical mechanics, that is, the effects of
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared to ...
. The von Neumann description of quantum measurement of an observable , when the system is prepared in a pure state is the following (note, however, that von Neumann's description dates back to the 1930s and is based on experiments as performed during that time – more specifically the Compton–Simon experiment; it is not applicable to most present-day measurements within the quantum domain): * Let have spectral resolution A = \int \lambda \, d \operatorname_A(\lambda), where is the resolution of the identity (also called
projection-valued measure In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
) associated with . Then the probability of the measurement outcome lying in an interval of is . In other words, the probability is obtained by integrating the characteristic function of against the countably additive measure \langle \psi \mid \operatorname_A \psi \rangle. * If the measured value is contained in , then immediately after the measurement, the system will be in the (generally non-normalized) state . If the measured value does not lie in , replace by its complement for the above state. For example, suppose the state space is the -dimensional complex Hilbert space and is a Hermitian matrix with eigenvalues , with corresponding eigenvectors . The projection-valued measure associated with , , is then \operatorname_A (B) = , \psi_i\rangle \langle \psi_i, , where is a Borel set containing only the single eigenvalue . If the system is prepared in state , \psi \rangle Then the probability of a measurement returning the value can be calculated by integrating the spectral measure \langle \psi \mid \operatorname_A \psi \rangle over . This gives trivially \langle \psi, \psi_i\rangle \langle \psi_i \mid \psi \rangle = , \langle \psi \mid \psi_i\rangle , ^2. The characteristic property of the von Neumann measurement scheme is that repeating the same measurement will give the same results. This is also called the ''projection postulate''. A more general formulation replaces the projection-valued measure with a positive-operator valued measure (POVM). To illustrate, take again the finite-dimensional case. Here we would replace the rank-1 projections , \psi_i\rangle \langle \psi_i, by a finite set of positive operators F_i F_i^* whose sum is still the identity operator as before (the resolution of identity). Just as a set of possible outcomes is associated to a projection-valued measure, the same can be said for a POVM. Suppose the measurement outcome is . Instead of collapsing to the (unnormalized) state , \psi_i\rangle \langle \psi_i , \psi\rangle after the measurement, the system now will be in the state F_i , \psi\rangle. Since the operators need not be mutually orthogonal projections, the projection postulate of von Neumann no longer holds. The same formulation applies to general mixed states. In von Neumann's approach, the state transformation due to measurement is distinct from that due to time evolution in several ways. For example, time evolution is deterministic and unitary whereas measurement is non-deterministic and non-unitary. However, since both types of state transformation take one quantum state to another, this difference was viewed by many as unsatisfactory. The POVM formalism views measurement as one among many other
quantum operation In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discusse ...
s, which are described by
completely positive map In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one that satisfies a stronger, more robust condition. Definition Let A and B be C*-algebras. A linear m ...
s which do not increase the trace.


List of mathematical tools

Part of the folklore of the subject concerns the
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
textbook Methods of Mathematical Physics put together by
Richard Courant Richard Courant (January 8, 1888 – January 27, 1972) was a German-American mathematician. He is best known by the general public for the book '' What is Mathematics?'', co-written with Herbert Robbins. His research focused on the areas of real ...
from
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
's
Göttingen University Göttingen (, ; ; ) is a college town, university city in Lower Saxony, central Germany, the Capital (political), capital of Göttingen (district), the eponymous district. The River Leine runs through it. According to the 2022 German census, t ...
courses. The story is told (by mathematicians) that physicists had dismissed the material as not interesting in the current research areas, until the advent of Schrödinger's equation. At that point it was realised that the mathematics of the new quantum mechanics was already laid out in it. It is also said that Heisenberg had consulted Hilbert about his matrix mechanics, and Hilbert observed that his own experience with infinite-dimensional matrices had derived from differential equations, advice which Heisenberg ignored, missing the opportunity to unify the theory as Weyl and Dirac did a few years later. Whatever the basis of the anecdotes, the mathematics of the theory was conventional at the time, whereas the physics was radically new. The main tools include: *
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
:
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
,
eigenvector In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by ...
s,
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s *
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
:
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s,
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
s,
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical ...
* differential equations:
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how ...
,
separation of variables In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary differential equation, ordinary and partial differential equations, in which algebra allows one to rewrite an equation so tha ...
,
ordinary differential equations In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives ...
,
Sturm–Liouville theory In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some ...
,
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
s *
harmonic analysis Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded do ...
:
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
s


See also

* List of mathematical topics in quantum theory *
Quantum foundations Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relat ...
*
Symmetry in quantum mechanics Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in t ...


Notes


References

* * * * * * * * * * *


Further reading

* * * * * * * * * * * * * * * * * * * {{Functional analysis Mathematical physics History of physics