Dirac–von Neumann Axioms
   HOME





Dirac–von Neumann Axioms
In mathematical physics, the Dirac–von Neumann axioms give a mathematical formulation of quantum mechanics in terms of operators on a Hilbert space. They were introduced by Paul Dirac in 1930 and John von Neumann in 1932. Hilbert space formulation The space \mathbb is a fixed complex Hilbert space of countably infinite dimension (as a hilbert-basis). * The observables of a quantum system are defined to be the (possibly unbounded) self-adjoint operators A on \mathbb. * A state \psi of the quantum system is a unit vector of \mathbb, up to scalar multiples; or equivalently, a ray of the Hilbert space \mathbb. * The expectation value of an observable ''A'' for a system in a state \psi is given by the inner product \langle \psi, A \psi \rangle. Operator algebra formulation The Dirac–von Neumann axioms can be formulated in terms of a C*-algebra as follows. * The bounded observables of the quantum mechanical system are defined to be the self-adjoint elements of the C*-algebra. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics. Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical parts of our world. Classical mechanics Applying the techniques of mathematical physics to classical mechanics typically involves the rigorous, abstract, and advanced reformulation of Newtonian mechanics in terms of Lagrangian mechanics and Hamiltonian mechanics (including both approaches in the presence of constraints). Both formulations are embodied in analytical mechanics and lead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Hilbert Space
In mathematics and the foundations of quantum mechanics, the projective Hilbert space or ray space \mathbf(H) of a complex Hilbert space H is the set of equivalence classes /math> of non-zero vectors v \in H, for the equivalence relation \sim on H given by :w \sim v if and only if v = \lambda w for some non-zero complex number \lambda. This is the usual construction of projectivization, applied to a complex Hilbert space. In quantum mechanics, the equivalence classes /math> are also referred to as rays or projective rays. Each such projective ray is a copy of the nonzero complex numbers, which is topologically a two-dimensional plane after one point has been removed. Overview The physical significance of the projective Hilbert space is that in quantum theory, the wave functions \psi and \lambda \psi represent the same ''physical state'', for any \lambda \ne 0. The Born rule demands that if the system is physical and measurable, its wave function has unit norm, \langle\psi, \p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Algebras
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic.''Theory of Operator Algebras I'' By Masamichi Takesaki, Springer 2012, p vi Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory. Overview Operator algebras can be used to study arbitrary sets of operators with little algebraic relation ''simultaneously''. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general, operator algebras are non-commutative rings. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Foundations Of Quantum Mechanics
''Mathematical Foundations of Quantum Mechanics'' () is a quantum mechanics book written by John von Neumann in 1932. It is an important early work in the development of the mathematical formulation of quantum mechanics. The book mainly summarizes results that von Neumann had published in earlier papers. Von Neumman formalized quantum mechanics using the concept of Hilbert spaces and linear operators. He acknowledged the previous work by Paul Dirac on the mathematical formalization of quantum mechanics, but was skeptical of Dirac's use of delta functions. He wrote the book in an attempt to be even more mathematically rigorous than Dirac. It was von Neumann's last book in German, afterwards he started publishing in English. Publication history The book was originally published in German in 1932 by Springer. It was translated into French by Alexandru Proca in 1946, and into Spanish in 1949. An English translation by Robert T. Beyer was published in 1955 by Princeton Universit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Principles Of Quantum Mechanics
} ''The Principles of Quantum Mechanics'' is an influential monograph on quantum mechanics written by Paul Dirac and first published by Oxford University Press in 1930. Dirac gives an account of quantum mechanics by "demonstrating how to construct a completely new theoretical framework from scratch"; "problems were tackled top-down, by working on the great principles, with the details left to look after themselves". It leaves classical physics behind after the first chapter, presenting the subject with a logical structure. Its 82 sections contain 785 equations with no diagrams. Dirac is credited with developing the subject "particularly in the University of Cambridge and University of Göttingen between 1925–1927", according to Graham Farmelo. It is considered one of the most influential texts on quantum mechanics, with theoretical physicist Laurie M. Brown stating that it "set the stage, the tone, and much of the language of the quantum-mechanical revolution". History ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schrödinger Equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, an Austrian physicist, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the wave function, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot. Classical physics can describe many aspects of nature at an ordinary (macroscopic and Microscopic scale, (optical) microscopic) scale, but is not sufficient for describing them at very small submicroscopic (atomic and subatomic) scales. Classical mechanics can be derived from quantum mechanics as an approximation that is valid at ordinary scales. Quantum systems have Bound state, bound states that are Quantization (physics), quantized to Discrete mathematics, discrete values of energy, momentum, angular momentum, and ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


State (functional Analysis)
In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both mixed states and pure states. Density matrices in turn generalize state vectors, which only represent pure states. For ''M'' an operator system in a C*-algebra ''A'' with identity, the set of all states of'' ''M, sometimes denoted by S(''M''), is convex, weak-* closed in the Banach dual space ''M''*. Thus the set of all states of ''M'' with the weak-* topology forms a compact Hausdorff space, known as the state space of ''M'' . In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected measurement outcome (real number). Jordan decomposition States can be viewed as noncommutative generalizations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inner Product Space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898. An inner product naturally induces an associated norm, (denoted , x, and , y, in the picture) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Expectation Value (quantum Mechanics)
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the ''most'' probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which can only yield integer values may have a non-integer mean), like the expected value from statistics. It is a fundamental concept in all areas of quantum physics. Operational definition Consider an Operator_(physics), operator A. The expectation value is then \langle A \rangle = \langle \psi , A , \psi \rangle in Bra ket notation, Dirac notation with , \psi \rangle a Normalization (statistics), normalized state vector. Formalism in quantum mechanics In quantum theory, an experimental setup is described by the observable A to be measured, and the Quantum state, state \sigma of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]