Dirac–von Neumann Axioms
   HOME

TheInfoList



OR:

In
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
, the Dirac–von Neumann axioms give a
mathematical formulation of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, whic ...
in terms of
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another sp ...
s on a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
. They were introduced by
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
in 1930 and
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
in 1932.


Hilbert space formulation

The space \mathbb is a fixed complex
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
of
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
(as a hilbert-basis). * The
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s of a
quantum system Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
are defined to be the (possibly unbounded)
self-adjoint operator In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
s A on \mathbb. * A
state State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
\psi of the quantum system is a
unit vector In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
of \mathbb, up to scalar multiples; or equivalently, a ray of the Hilbert space \mathbb. * The
expectation value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected va ...
of an observable ''A'' for a system in a state \psi is given by the
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
\langle \psi, A \psi \rangle.


Operator algebra formulation

The Dirac–von Neumann axioms can be formulated in terms of a
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of contin ...
as follows. * The bounded
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s of the quantum mechanical system are defined to be the self-adjoint elements of the C*-algebra. * The states of the quantum mechanical system are defined to be the
states State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
of the C*-algebra (in other words the normalized positive linear functionals \omega). * The value \omega (A) of a state \omega on an element A is the
expectation value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected va ...
of the observable A if the quantum system is in the state \omega.


Example

If the C*-algebra is the algebra of all bounded operators on a Hilbert space \mathbb, then the bounded observables are just the bounded self-adjoint operators on \mathbb. If v is a unit vector of \mathbb then \omega (A) = \langle v, A v \rangle is a state on the C*-algebra, meaning the unit vectors (up to scalar multiplication) give the states of the system. This is similar to Dirac's formulation of quantum mechanics, though Dirac also allowed unbounded operators, and did not distinguish clearly between self-adjoint and Hermitian operators.


See also

*
Quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
*
Schrödinger equation The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
*
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...


References

* * * * {{DEFAULTSORT:Dirac-von Neumann axioms Operator algebras Mathematical quantization
Axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...