Possibility Theory
   HOME

TheInfoList



OR:

Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is an alternative to probability theory. It uses measures of possibility and necessity between 0 and 1, ranging from impossible to possible and unnecessary to necessary, respectively. Professor Lotfi Zadeh first introduced possibility theory in 1978 as an extension of his theory of fuzzy sets and
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely ...
. Didier Dubois and Henri Prade further contributed to its development. Earlier in the 1950s, economist
G. L. S. Shackle George Lennox Sharman Shackle (14 July 1903 – 3 March 1992) was an English economist. He made a practical attempt to challenge classical rational choice theory and has been characterised as a "post-Keynesian", though he is influenced as well b ...
proposed the min/max algebra to describe degrees of potential surprise.


Formalization of possibility

For simplicity, assume that the universe of discourse Ω is a finite set. A possibility measure is a function \operatorname from 2^\Omega to , 1such that: :Axiom 1: \operatorname(\varnothing) = 0 :Axiom 2: \operatorname(\Omega) = 1 :Axiom 3: \operatorname(U \cup V) = \max \left( \operatorname(U), \operatorname(V) \right) for any disjoint subsets U and V. It follows that, like probability, the possibility measure is determined by its behavior on singletons: :\operatorname(U) = \max_ \operatorname(\). Axiom 1 can be interpreted as the assumption that Ω is an exhaustive description of future states of the world, because it means that no belief weight is given to elements outside Ω. Axiom 2 could be interpreted as the assumption that the evidence from which \operatorname was constructed is free of any contradiction. Technically, it implies that there is at least one element in Ω with possibility 1. Axiom 3 corresponds to the additivity axiom in probabilities. However there is an important practical difference. Possibility theory is computationally more convenient because Axioms 1–3 imply that: :\operatorname(U \cup V) = \max \left( \operatorname(U), \operatorname(V) \right) for ''any'' subsets U and V. Because one can know the possibility of the union from the possibility of each component, it can be said that possibility is ''compositional'' with respect to the union operator. Note however that it is not compositional with respect to the intersection operator. Generally: :\operatorname(U \cap V) \leq \min \left( \operatorname(U), \operatorname(V) \right) \leq \max \left( \operatorname(U), \operatorname(V) \right). When Ω is not finite, Axiom 3 can be replaced by: :For all index sets I, if the subsets U_ are pairwise disjoint, \operatorname\left(\bigcup_ U_i\right) = \sup_\operatorname(U_i).


Necessity

Whereas probability theory uses a single number, the probability, to describe how likely an event is to occur, possibility theory uses two concepts, the ''possibility'' and the ''necessity ''of the event. For any set U, the necessity measure is defined by :\operatorname(U) = 1 - \operatorname(\overline U) In the above formula, \overline U denotes the complement of U, that is the elements of \Omega that do not belong to U. It is straightforward to show that: :\operatorname(U) \leq \operatorname(U) for any U and that: :\operatorname(U \cap V) = \min ( \operatorname(U), \operatorname(V)) Note that contrary to probability theory, possibility is not self-dual. That is, for any event U, we only have the inequality: :\operatorname(U) + \operatorname(\overline U) \geq 1 However, the following duality rule holds: :For any event U, either \operatorname(U) = 1, or \operatorname(U) = 0 Accordingly, beliefs about an event can be represented by a number and a bit.


Interpretation

There are four cases that can be interpreted as follows: \operatorname(U) = 1 means that U is necessary. U is certainly true. It implies that \operatorname(U) = 1. \operatorname(U) = 0 means that U is impossible. U is certainly false. It implies that \operatorname(U) = 0. \operatorname(U) = 1 means that U is possible. I would not be surprised at all if U occurs. It leaves \operatorname(U) unconstrained. \operatorname(U) = 0 means that U is unnecessary. I would not be surprised at all if U does not occur. It leaves \operatorname(U) unconstrained. The intersection of the last two cases is \operatorname(U) = 0 and \operatorname(U) = 1 meaning that I believe nothing at all about U. Because it allows for indeterminacy like this, possibility theory relates to the graduation of a many-valued logic, such as intuitionistic logic, rather than the classical two-valued logic. Note that unlike possibility, fuzzy logic is compositional with respect to both the union and the intersection operator. The relationship with fuzzy theory can be explained with the following classical example. * Fuzzy logic: When a bottle is half full, it can be said that the level of truth of the proposition "The bottle is full" is 0.5. The word "full" is seen as a fuzzy predicate describing the amount of liquid in the bottle. * Possibility theory: There is one bottle, either completely full or totally empty. The proposition "the possibility level that the bottle is full is 0.5" describes a degree of belief. One way to interpret 0.5 in that proposition is to define its meaning as: I am ready to bet that it's empty as long as the odds are even (1:1) or better, and I would not bet at any rate that it's full.


Possibility theory as an imprecise probability theory

There is an extensive formal correspondence between probability and possibility theories, where the addition operator corresponds to the maximum operator. A possibility measure can be seen as a consonant
plausibility measure In sociology and especially the sociological study of religion, plausibility structures are the sociocultural contexts for systems of meaning within which these meanings make sense, or are made plausible. Beliefs and meanings held by individuals a ...
in Dempster–Shafer theory of evidence. The operators of possibility theory can be seen as a hyper-cautious version of the operators of the transferable belief model, a modern development of the theory of evidence. Possibility can be seen as an upper probability: any possibility distribution defines a unique credal set set of admissible
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
s by ::K = \. This allows one to study possibility theory using the tools of imprecise probabilities.


Necessity logic

We call ''generalized possibility'' every function satisfying Axiom 1 and Axiom 3. We call ''generalized necessity'' the dual of a generalized possibility. The generalized necessities are related with a very simple and interesting fuzzy logic called ''necessity logic''. In the deduction apparatus of necessity logic the logical axioms are the usual classical tautologies. Also, there is only a fuzzy inference rule extending the usual
modus ponens In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. ...
. Such a rule says that if ''α'' and ''α'' → ''β'' are proved at degree ''λ'' and ''μ'', respectively, then we can assert ''β'' at degree min{''λ'',''μ''}. It is easy to see that the theories of such a logic are the generalized necessities and that the completely consistent theories coincide with the necessities (see for example Gerla 2001).


See also

* Fuzzy measure theory * Logical possibility *
Modal logic Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other ...
* Probabilistic logic * Random-fuzzy variable * Transferable belief model * Upper and lower probabilities


References

*Dubois, Didier and Prade, Henri,
Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification
, ''Annals of Mathematics and Artificial Intelligence'' 32:35–66, 2002. *Gerla Giangiacomo
Fuzzy logic: Mathematical Tools for Approximate Reasoning
Kluwer Academic Publishers, Dordrecht 2001. *Ladislav J. Kohout,
Theories of Possibility: Meta-Axiomatics and Semantics
, ''
Fuzzy Sets and Systems ''Fuzzy Sets and Systems'' is a peer-reviewed international scientific journal published by Elsevier on behalf of the International Fuzzy Systems Association (IFSA) and was founded in 1978. The editors-in-chief (as of 2010) are Bernard De Baets ...
'' 25:357-367, 1988. * Zadeh, Lotfi, "Fuzzy Sets as the Basis for a Theory of Possibility", ''Fuzzy Sets and Systems'' 1:3–28, 1978. (Reprinted in ''Fuzzy Sets and Systems'' 100 (Supplement): 9–34, 1999.) *
Brian R. Gaines Brian R. Gaines (born c. 1938) is a British scientist, engineer, and Professor Emeritus at the University of Calgary. Biography Gaines received his Bachelor of Arts, Master of Arts and Doctor of Philosophy from Trinity College, Cambridge, and ...
and Ladislav J. Kohout
"Possible Automata"
in Proceedings of the International Symposium on Multiple-Valued Logic, pp. 183-192, Bloomington, Indiana, May 13-16, 1975. Probability theory Fuzzy logic Possibility