HOME

TheInfoList



OR:

Positron annihilation spectroscopy (PAS) or sometimes specifically referred to as Positron annihilation lifetime spectroscopy (PALS) is a non-destructive
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
technique to study voids and defects in solids.


Theory

The technique operates on the principle that a
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
or
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two parti ...
will annihilate through interaction with electrons. This annihilation releases
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s that can be detected; the time between emission of positrons from a
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
source and detection of gamma rays due to annihilation corresponds to the lifetime of positron or positronium. When positrons are injected into a solid body, they interact in some manner with the electrons in that species. For solids containing free electrons (such as
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s or
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s), the implanted positrons annihilate rapidly unless voids such as
vacancy defect In crystallography, a vacancy is a type of point defect in a crystal where an atom is missing from one of the lattice sites.Ehrhart, P. (1991) "Properties and interactions of atomic defects in metals and alloys", chapter 2, p. 88 in ''Landolt-Bör ...
s are present. If voids are available, positrons will reside in them and annihilate less rapidly than in the bulk of the material, on time scales up to ~1 ns. For insulators such as
polymers A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
or
zeolites Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These pos ...
, implanted positrons interact with electrons in the material to form positronium.
Positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two parti ...
is a metastable hydrogen-like bound state of an electron and a
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
which can exist in two spin states. ''Para''-positronium, ''p''-Ps, is a
singlet state In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number s=0. A ...
(the positron and electron spins are anti-parallel) with a characteristic self-annihilation lifetime of 125 ps in vacuum. ''Ortho''-positronium, ''o''-Ps, is a
triplet state In quantum mechanics, a triplet is a quantum state of a system with a spin of quantum number =1, such that there are three allowed values of the spin component, = −1, 0, and +1. Spin, in the context of quantum mechanics, is not a mechanical ...
(the positron and electron spins are parallel) with a characteristic self-annihilation lifetime of 142 ns in vacuum. In molecular materials, the lifetime of ''o''-Ps is environment dependent and it delivers information pertaining to the size of the void in which it resides. Ps can pick up a molecular electron with an opposite spin to that of the positron, leading to a reduction of the ''o''-Ps lifetime from 142 ns to 1-4 ns (depending on the size of the free volume in which it resides). The size of the molecular free volume can be derived from the ''o''-Ps lifetime via the semi-empirical Tao-Eldrup model. One has to keep in mind, that while the PALS is successful in examining local free volumes, it still needs to employ data from combined methods in order to yield free volume fractions; in fact, even approaches to obtain fractional free volume from the PALS data that claim to be independent on other experiments, such as PVT measurements, they still do employ theoretical considerations, such as iso-free-volume amount from Simha-Boyer theory. A convenient emerging method for obtaining free volume amounts in an independent manner are computer simulations; these can be combined with the PALS measurements and help to interpret the PALS measurements. Pore structure in insulators can be determined using the quantum mechanical Tao-Eldrup model and extensions thereof. By changing the temperature at which a sample is analyzed, the pore structure can be fit to a model where positronium is confined in one, two, or three dimensions. However, interconnected pores result in averaged lifetimes that cannot distinguish between smooth channels or channels having smaller, open, peripheral pores due to energetically favored positronium diffusion from small to larger pores. The behavior of positrons in molecules or condensed matter is nontrivial due to the strong correlation between electrons and positrons. Even the simplest case, that of a single positron immersed in a homogeneous gas of electrons, has proved to be a significant challenge for theory. The positron attracts electrons to it, increasing the contact density and hence enhancing the annihilation rate. Furthermore, the momentum density of annihilating electron-positron pairs is enhanced near the Fermi surface. Theoretical approaches used to study this problem have included the Tamm-Dancoff approximation, Fermi and perturbed hypernetted chain approximations,
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
methods and
quantum Monte Carlo Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution (or an accurate approximation) of the ...
.


Implementation

The experiment itself involves having a radioactive positron source (often 22Na) situated near the analyte. Positrons are emitted near-simultaneously with gamma rays. These gamma rays are detected by a nearby
scintillator A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbed ...
.


References

{{Reflist Spectroscopy Semiconductor analysis