Porous Basalt
   HOME

TheInfoList



OR:

Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a
percentage In mathematics, a percentage (from la, per centum, "by a hundred") is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", although the abbreviations "pct.", "pct" and sometimes "pc" are also us ...
between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface (cf.
closed-cell foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the reg ...
). There are many ways to test porosity in a substance or part, such as industrial CT scanning. The term porosity is used in multiple fields including
pharmaceutics Pharmaceutics is the discipline of pharmacy that deals with the process of turning a new chemical entity (NCE) or old drugs into a medication to be used safely and effectively by patients. It is also called the science of dosage form design. The ...
, ceramics,
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
, materials, manufacturing,
petrophysics Petrophysics (from the Greek πέτρα, ''petra'', "rock" and φύσις, ''physis'', "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservo ...
, hydrology, earth sciences, soil mechanics, and engineering.


Void fraction in two-phase flow

In gas-liquid
two-phase flow In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow. Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separ ...
, the void fraction is defined as the fraction of the flow-channel volume that is occupied by the gas phase or, alternatively, as the fraction of the cross-sectional area of the channel that is occupied by the gas phase. Void fraction usually varies from location to location in the flow channel (depending on the two-phase flow pattern). It fluctuates with time and its value is usually time averaged. In separated (i.e., non-
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
) flow, it is related to
volumetric flow rate In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol (sometimes ). I ...
s of the gas and the liquid phase, and to the ratio of the velocity of the two phases (called ''
slip ratio Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile. It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the t ...
'').


Porosity in earth sciences and construction

Used in geology, hydrogeology, soil science, and
building science Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. ''Building physics, architec ...
, the porosity of a porous medium (such as
rock Rock most often refers to: * Rock (geology), a naturally occurring solid aggregate of minerals or mineraloids * Rock music, a genre of popular music Rock or Rocks may also refer to: Places United Kingdom * Rock, Caerphilly, a location in Wales ...
or sediment) describes the fraction of void space in the material, where the void may contain, for example, air or water. It is defined by the ratio: :\phi = \frac where ''V''V is the volume of void-space (such as fluids) and ''V''T is the total or bulk volume of material, including the solid and void components. Both the mathematical symbols \phi and n are used to denote porosity. Porosity is a fraction between 0 and 1, typically ranging from less than 0.005 for solid granite to more than 0.5 for peat and clay. The porosity of a rock, or sedimentary layer, is an important consideration when attempting to evaluate the potential volume of water or hydrocarbons it may contain. Sedimentary porosity is a complicated function of many factors, including but not limited to: rate of burial, depth of burial, the nature of the
connate fluids In geology and sedimentology, connate fluids are liquids that were trapped in the pores of sedimentary rocks as they were deposited. These liquids are largely composed of water, but also contain many mineral components as ions in solution. As roc ...
, the nature of overlying sediments (which may impede fluid expulsion). One commonly used relationship between porosity and depth is given by the Athy (1930) equation: : \phi(z) = \phi_0 e^\, where \phi_0 is the surface porosity, k is the compaction coefficient (m−1) and z is depth (m). A value for porosity can alternatively be calculated from the bulk density \rho_, saturating
fluid density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
\rho_ and particle density \rho_: :\phi = \frac If the void space is filled with air, the following simpler form may be used: :\phi = 1-\frac Normal particle density is assumed to be approximately 2.65 g/cm3 ( silica), although a better estimation can be obtained by examining the
lithology The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lit ...
of the particles.


Porosity and hydraulic conductivity

Porosity can be proportional to hydraulic conductivity; for two similar sandy aquifers, the one with a higher porosity will typically have a higher hydraulic conductivity (more open area for the flow of water), but there are many complications to this relationship. The principal complication is that there is not a direct proportionality between porosity and hydraulic conductivity but rather an inferred proportionality. There is a clear proportionality between pore throat radii and hydraulic conductivity. Also, there tends to be a proportionality between pore throat radii and pore volume. If the proportionality between pore throat radii and porosity exists then a proportionality between porosity and hydraulic conductivity may exist. However, as grain size or sorting decreases the proportionality between pore throat radii and porosity begins to fail and therefore so does the proportionality between porosity and hydraulic conductivity. For example: clays typically have very low hydraulic conductivity (due to their small pore throat radii) but also have very high porosities (due to the structured nature of
clay minerals Clay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2 Si2 O5( OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces. Clay mineral ...
), which means clays can hold a large volume of water per volume of bulk material, but they do not release water rapidly and therefore have low hydraulic conductivity.


Sorting and porosity

Well sorted (grains of approximately all one size) materials have higher porosity than similarly sized poorly sorted materials (where smaller particles fill the gaps between larger particles). The graphic illustrates how some smaller grains can effectively fill the pores (where all water flow takes place), drastically reducing porosity and hydraulic conductivity, while only being a small fraction of the total volume of the material. For tables of common porosity values for
earth materials Earth materials include minerals, rocks, soil and water. These are the naturally occurring materials found on Earth that constitute the raw materials upon which our global society exists. Earth materials are vital resources that provide the basic c ...
, see the "further reading" section in the Hydrogeology article.


Porosity of rocks

Consolidated rocks (e.g., sandstone,
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especial ...
, granite or limestone) potentially have more complex "dual" porosities, as compared with alluvial sediment. This can be split into connected and unconnected porosity. Connected porosity is more easily measured through the volume of gas or liquid that can flow into the rock, whereas fluids cannot access unconnected pores. Porosity is the ratio of pore volume to its total volume. Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and composition. Porosity is not controlled by grain size, as the volume of between-grain space is related only to the method of grain packing. Rocks normally decrease in porosity with age and depth of burial. Tertiary age Gulf Coast sandstones are in general more porous than
Cambrian The Cambrian Period ( ; sometimes symbolized C with bar, Ꞓ) was the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million ...
age sandstones. There are exceptions to this rule, usually because of the depth of burial and thermal history.


Porosity of soil

Porosity of surface soil typically decreases as particle size increases. This is due to soil
aggregate Aggregate or aggregates may refer to: Computing and mathematics * collection of objects that are bound together by a root entity, otherwise known as an aggregate root. The aggregate root guarantees the consistency of changes being made within the ...
formation in finer textured surface soils when subject to soil biological processes. Aggregation involves particulate adhesion and higher resistance to compaction. Typical bulk density of sandy soil is between 1.5 and 1.7 g/cm3. This calculates to a porosity between 0.43 and 0.36. Typical bulk density of clay soil is between 1.1 and 1.3 g/cm3. This calculates to a porosity between 0.58 and 0.51. This seems counterintuitive because clay soils are termed ''heavy'', implying ''lower'' porosity. Heavy apparently refers to a gravitational
moisture content Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ...
effect in combination with terminology that harkens back to the relative force required to pull a tillage implement through the clayey soil at field moisture content as compared to sand. Porosity of subsurface soil is lower than in surface soil due to compaction by gravity. Porosity of 0.20 is considered normal for unsorted gravel size material at depths below the biomantle. Porosity in finer material below the aggregating influence of pedogenesis can be expected to approximate this value. Soil porosity is complex. Traditional models regard porosity as continuous. This fails to account for anomalous features and produces only approximate results. Furthermore, it cannot help model the influence of environmental factors which affect pore geometry. A number of more complex models have been proposed, including
fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu ...
s,
bubble Bubble, Bubbles or The Bubble may refer to: Common uses * Bubble (physics), a globule of one substance in another, usually gas in a liquid ** Soap bubble * Economic bubble, a situation where asset prices are much higher than underlying fundame ...
theory, cracking theory,
Boolean Any kind of logic, function, expression, or theory based on the work of George Boole is considered Boolean. Related to this, "Boolean" may refer to: * Boolean data type, a form of data with only two possible values (usually "true" and "false" ...
grain process, packed sphere, and numerous other models. The characterisation of pore space in soil is an associated concept.


Types of geologic porosities

;Primary porosity: The main or original porosity system in a
rock Rock most often refers to: * Rock (geology), a naturally occurring solid aggregate of minerals or mineraloids * Rock music, a genre of popular music Rock or Rocks may also refer to: Places United Kingdom * Rock, Caerphilly, a location in Wales ...
or unconfined alluvial deposit. ;Secondary porosity: A subsequent or separate porosity system in a rock, often enhancing overall porosity of a rock. This can be a result of chemical leaching of minerals or the generation of a fracture system. This can replace the primary porosity or coexist with it (see dual porosity below). ;Fracture porosity: This is porosity associated with a fracture system or faulting. This can create secondary porosity in rocks that otherwise would not be reservoirs for hydrocarbons due to their primary porosity being destroyed (for example due to depth of burial) or of a rock type not normally considered a reservoir (for example igneous intrusions or metasediments). ;Vuggy porosity: This is secondary porosity generated by dissolution of large features (such as macrofossils) in carbonate rocks leaving large holes, vugs, or even caves. ; Effective porosity (also called ''open porosity''): Refers to the fraction of the total volume in which
fluid flow In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
is effectively taking place and includes catenary and dead-end (as these pores cannot be flushed, but they can cause fluid movement by release of pressure like gas expansion) pores and excludes closed pores (or non-connected cavities). This is very important for groundwater and petroleum flow, as well as for solute transport. ;Ineffective porosity (also called ''closed porosity''): Refers to the fraction of the total volume in which fluids or gases are present but in which
fluid flow In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
can not effectively take place and includes the closed pores. Understanding the morphology of the porosity is thus very important for groundwater and petroleum flow. ;Dual porosity: Refers to the conceptual idea that there are two overlapping reservoirs which interact. In fractured rock aquifers, the rock mass and fractures are often simulated as being two overlapping but distinct bodies. Delayed yield, and leaky aquifer flow solutions are both mathematically similar solutions to that obtained for dual porosity; in all three cases water comes from two mathematically different reservoirs (whether or not they are physically different). ; Macroporosity: In solids (i.e. excluding aggregated materials such as soils), the term 'macroporosity' refers to pores greater than 50  nm in diameter. Flow through macropores is described by bulk diffusion. ;
Mesoporosity A mesoporous material (or super nanoporous ) is a nanoporous material containing pores with diameters between 2 and 50 nm, according to IUPAC nomenclature. For comparison, IUPAC defines microporous material as a material having pores smaller ...
: In solids (i.e. excluding aggregated materials such as soils), the term 'mesoporosity' refers to pores greater than 2 nm and less than 50 nm in diameter. Flow through mesopores is described by Knudsen diffusion. ;
Microporosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
: In solids (i.e. excluding aggregated materials such as soils), the term 'microporosity' refers to pores smaller than 2 nm in diameter. Movement in micropores is activated by diffusion.


Porosity of fabric or aerodynamic porosity

The ratio of holes to solid that the wind "sees". Aerodynamic porosity is less than visual porosity, by an amount that depends on the constriction of holes.


Die casting porosity

Casting porosity is a consequence of one or more of the following: gasification of contaminants at molten-metal temperatures; shrinkage that takes place as molten metal solidifies; and unexpected or uncontrolled changes in temperature or humidity. While porosity is inherent in die casting manufacturing, its presence may lead to component failure where pressure integrity is a critical characteristic. Porosity may take on several forms from interconnected micro-porosity, folds, and inclusions to macro porosity visible on the part surface. The end result of porosity is the creation of a leak path through the walls of a casting that prevents the part from holding pressure. Porosity may also lead to out-gassing during the painting process, leaching of plating acids and tool chatter in machining pressed metal components.


Measuring porosity

Several methods can be employed to measure porosity: * Direct methods (determining the bulk volume of the porous sample, and then determining the volume of the skeletal material with no pores (pore volume = total volume − material volume). * Optical methods (e.g., determining the area of the material versus the area of the pores visible under the microscope). The "areal" and "volumetric" porosities are equal for porous media with random structure. * Computed tomography method (using industrial CT scanning to create a 3D rendering of external and internal geometry, including voids. Then implementing a defect analysis utilizing computer software) * Imbibition methods, i.e., immersion of the porous sample, under vacuum, in a fluid that preferentially wets the pores. ** Water saturation method (pore volume = total volume of water − volume of water left after soaking). * Water evaporation method (pore volume = (weight of saturated sample − weight of dried sample)/density of water) * Mercury intrusion
porosimetry Porosimetry is an Measurement, analytical technique used to determine various quantifiable aspects of a material's Porosity, porous structure, such as pore diameter, total pore volume, surface area, and Bulk density, bulk and absolute density, den ...
(several non-mercury intrusion techniques have been developed due to toxicological concerns, and the fact that mercury tends to form amalgams with several metals and alloys). * Gas expansion method.F.A.L. Dullien, "Porous Media. Fluid Transport and Pore Structure", Academic Press, 1992. A sample of known bulk volume is enclosed in a container of known volume. It is connected to another container with a known volume which is evacuated (i.e., near vacuum pressure). When a valve connecting the two containers is opened, gas passes from the first container to the second until a uniform pressure distribution is attained. Using ideal gas law, the volume of the pores is calculated as :V_V = V_T-V_a-V_b , where :VV is the effective volume of the pores, :VT is the bulk volume of the sample, :Va is the volume of the container containing the sample, :Vb is the volume of the evacuated container, :P1 is the initial pressure in the initial pressure in volume Va and VV, and :P2 is final pressure present in the entire system. :The porosity follows straightforwardly by its proper definition :\phi = \frac. :Note that this method assumes that gas communicates between the pores and the surrounding volume. In practice, this means that the pores must not be closed cavities. * Thermoporosimetry and cryoporometry. A small crystal of a liquid melts at a lower temperature than the bulk liquid, as given by the Gibbs-Thomson equation. Thus if a liquid is imbibed into a porous material, and frozen, the melting temperature will provide information on the pore-size distribution. The detection of the melting can be done by sensing the transient heat flows during phase-changes using
differential scanning calorimetry Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and ref ...
– (DSC thermoporometry), measuring the quantity of mobile liquid using nuclear magnetic resonance – (NMR cryoporometry) or measuring the amplitude of neutron scattering from the imbibed crystalline or liquid phases – (ND cryoporometry).


See also

* Void ratio *
Petroleum geology Petroleum geology is the study of origin, occurrence, movement, accumulation, and exploration of hydrocarbon fuels. It refers to the specific set of geological disciplines that are applied to the search for hydrocarbons (oil exploration). Sedime ...
* Poromechanics * Bulk density *
Particle density (packed density) {{refimprove, date=September 2016 The particle density of a particulate solid or powder, is the density of the particles that make up the powder, in contrast to the bulk density, which measures the average density of a large volume of the powder ...
* Packing density * Void (composites) *
Coherent diffraction imaging Coherent diffractive imaging (CDI) is a "lensless" technique for 2D or 3D reconstruction of the image of nanoscale structures such as nanotubes, nanocrystals, porous nanocrystalline layers, defects, potentially proteins, and more. In CDI, a highl ...


References

* * * * * * *


Footnotes


External links


Absolute Porosity & Effective Porosity Calculations

Geology Buzz: Porosity
{{Authority control Aquifers Hydrogeology Porous media Soil physics Soil mechanics