HOME

TheInfoList



OR:

In
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
, an orbit is the curved trajectory of an object such as the trajectory of a
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a ...
around a star, or of a
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons ...
around a planet, or of an
artificial satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisoto ...
around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by
Kepler's laws of planetary motion In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular or ...
. For most situations, orbital motion is adequately approximated by
Newtonian mechanics Newton's laws of motion are three basic Scientific law, laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at re ...
, which explains
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
as a force obeying an inverse-square law. However,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's general theory of relativity, which accounts for gravity as due to curvature of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why diffe ...
, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.


History

Historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars ...
. This model posited the existence of perfect moving spheres or rings to which the stars and planets were attached. It assumed the heavens were fixed apart from the motion of the spheres and was developed without any understanding of gravity. After the planets' motions were more accurately measured, theoretical mechanisms such as
deferent and epicycle In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (, meaning "circle moving on another circle") was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, S ...
s were added. Although the model was capable of reasonably accurately predicting the planets' positions in the sky, more and more epicycles were required as the measurements became more accurate, hence the model became increasingly unwieldy. Originally geocentric, it was modified by
Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formula ...
to place the Sun at the centre to help simplify the model. The model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the modern understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
are elliptical, not circular (or epicyclic), as had previously been believed, and that the Sun is not located at the center of the orbits, but rather at one focus. Second, he found that the orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.23/11.862, is practically equal to that for Venus, 0.7233/0.6152, in accord with the relationship. Idealised orbits meeting these rules are known as Kepler orbits.
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
demonstrated that Kepler's laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s (this assumes that the force of gravity propagates instantaneously). Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
es, and that those bodies orbit their common center of mass. Where one body is much more massive than the other (as is the case of an artificial satellite orbiting a planet), it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Advances in Newtonian mechanics were then used to explore variations from the simple assumptions behind Kepler orbits, such as the perturbations due to other bodies, or the impact of spheroidal rather than spherical bodies.
Joseph-Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangianew approach to
Newtonian mechanics Newton's laws of motion are three basic Scientific law, laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at re ...
emphasizing energy more than force, and made progress on the
three-body problem In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's ...
, discovering the Lagrangian points. In a dramatic vindication of classical mechanics, in 1846
Urbain Le Verrier Urbain Jean Joseph Le Verrier FRS (FOR) HFRSE (; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using ...
was able to predict the position of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
based on unexplained perturbations in the orbit of
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of Cronu ...
.
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
in his 1916 paper ''The Foundation of the General Theory of Relativity'' explained that gravity was due to curvature of
space-time In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differe ...
and removed Newton's assumption that changes propagate instantaneously. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits. In relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions (except where there are very strong gravity fields and very high speeds) but the differences are measurable. Essentially all the experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy. The original vindication of general relativity is that it was able to account for the remaining unexplained amount in precession of Mercury's perihelion first noted by Le Verrier. However, Newton's solution is still used for most short term purposes since it is significantly easier to use and sufficiently accurate.


Planetary orbits

Within a planetary system, planets,
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
s,
asteroid An asteroid is a minor planet of the Solar System#Inner solar system, inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic o ...
s and other
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term '' ...
s,
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or Coma (cometary), coma, and sometimes also a Comet ta ...
s, and space debris orbit the system's barycenter in elliptical orbits. A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies that are gravitationally bound to one of the planets in a planetary system, either
natural Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
or artificial satellites, follow orbits about a barycenter near or within that planet. Owing to mutual
gravitational perturbations In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from ...
, the eccentricities of the planetary orbits vary over time. Mercury, the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch,
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin atmos ...
has the next largest eccentricity while the smallest orbital eccentricities are seen with
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
. As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and the apoapsis is that point at which they are the farthest. (More specific terms are used for specific bodies. For example, ''perigee'' and ''apogee'' are the lowest and highest parts of an orbit around Earth, while ''perihelion'' and ''aphelion'' are the closest and farthest points of an orbit around the Sun.) In the case of planets orbiting a star, the mass of the star and all its satellites are calculated to be at a single point called the barycenter. The paths of all the star's satellites are elliptical orbits about that barycenter. Each satellite in that system will have its own elliptical orbit with the barycenter at one focal point of that ellipse. At any point along its orbit, any satellite will have a certain value of kinetic and potential energy with respect to the barycenter, and the sum of those two energies is a constant value at every point along its orbit. As a result, as a planet approaches periapsis, the planet will increase in speed as its potential energy decreases; as a planet approaches apoapsis, its velocity will decrease as its potential energy increases.


Understanding orbits

There are a few common ways of understanding orbits: * A force, such as gravity, pulls an object into a curved path as it attempts to fly off in a straight line. * As the object is pulled toward the massive body, it falls toward that body. However, if it has enough tangential velocity it will not fall into the body but will instead continue to follow the curved trajectory caused by that body indefinitely. The object is then said to be orbiting the body. As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a '
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anci ...
', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle speed. The effects of air friction on the cannonball are ignored (or perhaps the mountain is high enough that the cannon is above the Earth's atmosphere, which is the same thing). If the cannon fires its ball with a low initial speed, the trajectory of the ball curves downward and hits the ground (A). As the firing speed is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in a technical sense—they are describing a portion of an elliptical path around the center of gravity—but the orbits are interrupted by striking the Earth. If the cannonball is fired with sufficient speed, the ground curves away from the ball at least as much as the ball falls—so the ball never strikes the ground. It is now in what could be called a non-interrupted or circumnavigating, orbit. For any specific combination of height above the center of gravity and mass of the planet, there is one specific firing speed (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a circular orbit, as shown in (C). As the firing speed is increased beyond this, non-interrupted elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be non-interrupted elliptical orbits at slower firing speed; these will come closest to the Earth at the point half an orbit beyond, and directly opposite the firing point, below the circular orbit. At a specific horizontal firing speed called
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
, dependent on the mass of the planet and the distance of the object from the barycenter, an open orbit (E) is achieved that has a parabolic path. At even greater speeds the object will follow a range of hyperbolic trajectories. In a practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space" never to return. The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes: ; No orbit: ; Suborbital trajectories: Range of interrupted elliptical paths ; Orbital trajectories (or simply, orbits): ; Open (or escape) trajectories: It is worth noting that orbital rockets are launched vertically at first to lift the rocket above the atmosphere (which causes frictional drag), and then slowly pitch over and finish firing the rocket engine parallel to the atmosphere to achieve orbit speed. Once in orbit, their speed keeps them in orbit above the atmosphere. If e.g., an elliptical orbit dips into dense air, the object will lose speed and re-enter (i.e. fall). Occasionally a space craft will intentionally intercept the atmosphere, in an act commonly referred to as an aerobraking maneuver.


Newton's laws of motion


Newton's law of gravitation and laws of motion for two-body problems

In most situations, relativistic effects can be neglected, and Newton's laws give a sufficiently accurate description of motion. The acceleration of a body is equal to the sum of the forces acting on it, divided by its mass, and the gravitational force acting on a body is proportional to the product of the masses of the two attracting bodies and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two-point masses or spherical bodies, only influenced by their mutual gravitation (called a two-body problem), their trajectories can be exactly calculated. If the heavier body is much more massive than the smaller, as in the case of a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate enough and convenient to describe the motion in terms of a coordinate system that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still sufficient and can be had by placing the coordinate system at the center of the mass of the system.


Defining gravitational potential energy

Energy is associated with gravitational fields. A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational ''
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
''. Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses, the gravitational energy decreases to zero as they approach zero separation. It is convenient and conventional to assign the potential energy as having zero value when they are an infinite distance apart, and hence it has a negative value (since it decreases from zero) for smaller finite distances.


Orbital energies and orbit shapes

When only two gravitational bodies interact, their orbits follow a
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
. The orbit can be open (implying the object never returns) or closed (returning). Which it is depends on the total
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
( kinetic +
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
for that position, in the case of a closed orbit, the speed is always less than the escape velocity. Since the kinetic energy is never negative if the common convention is adopted of taking the potential energy as zero at infinite separation, the bound orbits will have negative total energy, the parabolic trajectories zero total energy, and hyperbolic orbits positive total energy. An open orbit will have a parabolic shape if it has the velocity of exactly the escape velocity at that point in its trajectory, and it will have the shape of a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, c ...
when its velocity is greater than the escape velocity. When bodies with escape velocity or greater approach each other, they will briefly curve around each other at the time of their closest approach, and then separate, forever. All closed orbits have the shape of an ellipse. A circular orbit is a special case, wherein the foci of the ellipse coincide. The point where the orbiting body is closest to Earth is called the perigee, and is called the periapsis (less properly, "perifocus" or "pericentron") when the orbit is about a body other than Earth. The point where the satellite is farthest from Earth is called the
apogee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
, apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the line-of-apsides. This is the major axis of the ellipse, the line through its longest part.


Kepler's laws

Bodies following closed orbits repeat their paths with a certain time called the period. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows: # The orbit of a planet around the Sun is an ellipse, with the Sun in one of the focal points of that ellipse. his focal point is actually the barycenter of the Solar System">Sun-planet system; for simplicity, this explanation assumes the Sun's mass is infinitely larger than that planet's.] The planet's orbit lies in a plane, called the orbital plane. The point on the orbit closest to the attracting body is the periapsis. The point farthest from the attracting body is called the apoapsis. There are also specific terms for orbits about particular bodies; things orbiting the Sun have a
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any e ...
and
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any e ...
, things orbiting the Earth have a perigee and
apogee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
, and things orbiting the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width ...
have a perilune and apolune (or periselene and aposelene respectively). An orbit around any
star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
, not just the Sun, has a
periastron An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
and an
apastron An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
. # As the planet moves in its orbit, the line from the Sun to the planet sweeps a constant area of the orbital plane for a given period of time, regardless of which part of its orbit the planet traces during that period of time. This means that the planet moves faster near its
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any e ...
than near its
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any e ...
, because at the smaller distance it needs to trace a greater arc to cover the same area. This law is usually stated as "equal areas in equal time." # For a given orbit, the ratio of the cube of its semi-major axis to the square of its period is constant.


Limitations of Newton's law of gravitation

Note that while bound orbits of a point mass or a spherical body with a Newtonian gravitational field are closed ellipses, which repeat the same path exactly and indefinitely, any non-spherical or non-Newtonian effects (such as caused by the slight oblateness of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
, or by relativistic effects, thereby changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed ellipses characteristic of Newtonian two-body motion. The two-body solutions were published by Newton in Principia in 1687. In 1912,
Karl Fritiof Sundman Karl Frithiof Sundman (28 October 1873, in Kaskinen – 28 September 1949, in Helsinki) was a Finnish mathematician who used analytic methods to prove the existence of a convergent infinite series solution to the three-body problem in two pa ...
developed a converging infinite series that solves the
three-body problem In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's ...
; however, it converges too slowly to be of much use. Except for special cases like the
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of ...
s, no method is known to solve the equations of motion for a system with four or more bodies.


Approaches to many-body problems

Rather than an exact closed form solution, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms: :One form takes the pure elliptic motion as a basis and adds perturbation terms to account for the gravitational influence of multiple bodies. This is convenient for calculating the positions of astronomical bodies. The equations of motion of the moons, planets, and other bodies are known with great accuracy, and are used to generate tables for
celestial navigation Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space (or on the surface ...
. Still, there are secular phenomena that have to be dealt with by
post-Newtonian In general relativity, the post-Newtonian expansions (PN expansions) are used for finding an approximate solution of the Einstein field equations for the metric tensor. The approximations are expanded in small parameters which express orders of ...
methods. :The differential equation form is used for scientific or mission-planning purposes. According to Newton's laws, the sum of all the forces acting on a body will equal the mass of the body times its acceleration (''F = ma''). Therefore accelerations can be expressed in terms of positions. The perturbation terms are much easier to describe in this form. Predicting subsequent positions and velocities from initial values of position and velocity corresponds to solving an initial value problem. Numerical methods calculate the positions and velocities of the objects a short time in the future, then repeat the calculation ad nauseam. However, tiny arithmetic errors from the limited accuracy of a computer's math are cumulative, which limits the accuracy of this approach. Differential simulations with large numbers of objects perform the calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large assemblages of objects have been simulated.


Newtonian analysis of orbital motion

The following derivation applies to such an elliptical orbit. We start only with the Newtonian law of gravitation stating that the gravitational acceleration towards the central body is related to the inverse of the square of the distance between them, namely : F_2 = -\frac where ''F''2 is the force acting on the mass ''m''2 caused by the gravitational attraction mass ''m''1 has for ''m''2, ''G'' is the universal gravitational constant, and ''r'' is the distance between the two masses centers. From Newton's Second Law, the summation of the forces acting on ''m''2 related to that body's acceleration: : F_2 = m_2 A_2 where ''A''2 is the acceleration of ''m''2 caused by the force of gravitational attraction ''F''2 of ''m''1 acting on ''m''2. Combining Eq. 1 and 2: : -\frac = m_2 A_2 Solving for the acceleration, ''A''2: : A_2 = \frac = - \frac \frac = -\frac where \mu\, is the standard gravitational parameter, in this case G m_1. It is understood that the system being described is ''m''2, hence the subscripts can be dropped. We assume that the central body is massive enough that it can be considered to be stationary and we ignore the more subtle effects of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
. When a pendulum or an object attached to a spring swings in an ellipse, the inward acceleration/force is proportional to the distance A = F/m = - k r. Due to the way vectors add, the component of the force in the \hat or in the \hat directions are also proportionate to the respective components of the distances, r''_x = A_x = - k r_x . Hence, the entire analysis can be done separately in these dimensions. This results in the harmonic parabolic equations x = A \cos(t) and y = B \sin(t) of the ellipse. In contrast, with the decreasing relationship A = \mu/r^2 , the dimensions cannot be separated. The location of the orbiting object at the current time t is located in the plane using vector calculus in
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to t ...
both with the standard Euclidean basis and with the polar basis with the origin coinciding with the center of force. Let r be the distance between the object and the center and \theta be the angle it has rotated. Let \hat and \hat be the standard Euclidean bases and let \hat = \cos(\theta)\hat + \sin(\theta)\hat and \hat = - \sin(\theta)\hat + \cos(\theta)\hat be the radial and transverse polar basis with the first being the unit vector pointing from the central body to the current location of the orbiting object and the second being the orthogonal unit vector pointing in the direction that the orbiting object would travel if orbiting in a counter clockwise circle. Then the vector to the orbiting object is : \hat = r \cos(\theta)\hat + r \sin(\theta)\hat = r \hat We use \dot r and \dot \theta to denote the standard derivatives of how this distance and angle change over time. We take the derivative of a vector to see how it changes over time by subtracting its location at time t from that at time t + \delta t and dividing by \delta t . The result is also a vector. Because our basis vector \hat moves as the object orbits, we start by differentiating it. From time t to t + \delta t , the vector \hat keeps its beginning at the origin and rotates from angle \theta to \theta + \dot \theta\ \delta t which moves its head a distance \dot \theta\ \delta t in the perpendicular direction \hat giving a derivative of \dot \theta \hat . : \begin \hat &= \cos(\theta)\hat + \sin(\theta)\hat \\ \frac = \dot &= -\sin(\theta)\dot \theta \hat + \cos(\theta)\dot \theta \hat = \dot \theta \hat \\ \hat &= -\sin(\theta)\hat + \cos(\theta)\hat \\ \frac = \dot &= -\cos(\theta)\dot \theta \hat - \sin(\theta) \dot \theta \hat = -\dot \theta \hat \end We can now find the velocity and acceleration of our orbiting object. : \begin \hat &= r \hat \\ \dot &= \frac \hat + r \frac = \dot r \hat + r \left \dot \theta \hat \right\\ \ddot &= \left ddot r \hat + \dot r \dot \theta \hat \right+ \left dot r \dot \theta \hat + r \ddot \theta \hat - r \dot \theta^2 \hat \right\\ &= \left ddot r - r\dot\theta^2\righthat + \left \ddot\theta + 2 \dot r \dot\theta\right\hat \end The coefficients of \hat and \hat give the accelerations in the radial and transverse directions. As said, Newton gives this first due to gravity is -\mu/r^2 and the second is zero. Equation (2) can be rearranged using integration by parts. : r \ddot\theta + 2 \dot r \dot\theta = \frac\frac\left( r^2 \dot \theta \right) = 0 We can multiply through by r because it is not zero unless the orbiting object crashes. Then having the derivative be zero gives that the function is a constant. which is actually the theoretical proof of
Kepler's second law In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits ...
(A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, ''h'', is the angular momentum per unit mass. In order to get an equation for the orbit from equation (1), we need to eliminate time. (See also Binet equation.) In polar coordinates, this would express the distance r of the orbiting object from the center as a function of its angle \theta . However, it is easier to introduce the auxiliary variable u = 1/r and to express u as a function of \theta . Derivatives of r with respect to time may be rewritten as derivatives of u with respect to angle. : u = : \dot\theta = \frac = hu^2 (reworking (3)) : \begin \frac &= \frac\left(\frac\right)\frac = -\frac = -\frac \\ \frac &= -\frac\frac\frac = -\frac = -\frac \ \ \ \text \ \ \ \ddot r = - h^2 u^2 \frac \end Plugging these into (1) gives : \begin \ddot r - r\dot\theta^2 &= -\frac \\ -h^2 u^2 \frac - \frac \left(h u^2\right)^2 &= -\mu u^2 \end So for the gravitational force – or, more generally, for ''any'' inverse square force law – the right hand side of the equation becomes a constant and the equation is seen to be the harmonic equation (up to a shift of origin of the dependent variable). The solution is: : u(\theta) = \frac\mu - A \cos(\theta - \theta_0) where ''A'' and ''θ''0 are arbitrary constants. This resulting equation of the orbit of the object is that of an ellipse in Polar form relative to one of the focal points. This is put into a more standard form by letting e \equiv h^2 A/\mu be the eccentricity, letting a \equiv h^2/\mu\left(1 - e^2\right) be the semi-major axis. Finally, letting \theta_0 \equiv 0 so the long axis of the ellipse is along the positive ''x'' coordinate. :r(\theta) = \frac When the two-body system is under the influence of torque, the angular momentum ''h'' is not a constant. After the following calculation: :\begin \frac &= -\frac \frac = -\frac \frac \\ \frac &= -\frac \frac - \frac \frac \frac \\ \left(\frac\right)^2 r &= \frac \end we will get the Sturm-Liouville equation of two-body system.


Relativistic orbital motion

The above classical ( Newtonian) analysis of orbital mechanics assumes that the more subtle effects of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
, such as
frame dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses cau ...
and
gravitational time dilation Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the close ...
are negligible. Relativistic effects cease to be negligible when near very massive bodies (as with the precession of Mercury's orbit about the Sun), or when extreme precision is needed (as with calculations of the orbital elements and time signal references for GPS satellites.).


Orbital planes

The analysis so far has been two dimensional; it turns out that an unperturbed orbit is two-dimensional in a plane fixed in space, and thus the extension to three dimensions requires simply rotating the two-dimensional plane into the required angle relative to the poles of the planetary body involved. The rotation to do this in three dimensions requires three numbers to uniquely determine; traditionally these are expressed as three angles.


Orbital period

The orbital period is simply how long an orbiting body takes to complete one orbit.


Specifying orbits

Six parameters are required to specify a Keplerian orbit about a body. For example, the three numbers that specify the body's initial position, and the three values that specify its velocity will define a unique orbit that can be calculated forwards (or backwards) in time. However, traditionally the parameters used are slightly different. The traditionally used set of orbital elements is called the set of
Keplerian elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same o ...
, after Johannes Kepler and his laws. The Keplerian elements are six: *
Inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a Plane of reference, reference plane and the orbital plane or Axis of rotation, axis of direction of the orbiting object ...
(''i'') * Longitude of the ascending node (Ω) * Argument of periapsis (ω) * Eccentricity (''e'') * Semimajor axis (''a'') * Mean anomaly at epoch (''M''0). In principle, once the orbital elements are known for a body, its position can be calculated forward and backward indefinitely in time. However, in practice, orbits are affected or perturbed, by other forces than simple gravity from an assumed point source (see the next section), and thus the orbital elements change over time.


Orbital perturbations

An orbital perturbation is when a force or impulse which is much smaller than the overall force or average impulse of the main gravitating body and which is external to the two orbiting bodies causes an acceleration, which changes the parameters of the orbit over time.


Radial, prograde and transverse perturbations

A small radial impulse given to a body in orbit changes the eccentricity, but not the orbital period (to first order). A prograde or retrograde impulse (i.e. an impulse applied along the orbital motion) changes both the eccentricity and the orbital period. Notably, a prograde impulse at periapsis raises the altitude at apoapsis, and vice versa and a retrograde impulse does the opposite. A transverse impulse (out of the orbital plane) causes rotation of the orbital plane without changing the period or eccentricity. In all instances, a closed orbit will still intersect the perturbation point.


Orbital decay

If an orbit is about a planetary body with a significant atmosphere, its orbit can decay because of
drag Drag or The Drag may refer to: Places * Drag, Norway, a village in Tysfjord municipality, Nordland, Norway * ''Drág'', the Hungarian name for Dragu Commune in Sălaj County, Romania * Drag (Austin, Texas), the portion of Guadalupe Street adj ...
. Particularly at each periapsis, the object experiences atmospheric drag, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum. This is similar to the effect of slowing a pendulum at its lowest point; the highest point of the pendulum's swing becomes lower. With each successive slowing more of the orbit's path is affected by the atmosphere and the effect becomes more pronounced. Eventually, the effect becomes so great that the maximum kinetic energy is not enough to return the orbit above the limits of the atmospheric drag effect. When this happens the body will rapidly spiral down and intersect the central body. The bounds of an atmosphere vary wildly. During a
solar maximum Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. On average, the solar cycle t ...
, the Earth's atmosphere causes drag up to a hundred kilometres higher than during a solar minimum. Some satellites with long conductive tethers can also experience orbital decay because of electromagnetic drag from the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
. As the wire cuts the magnetic field it acts as a generator, moving electrons from one end to the other. The orbital energy is converted to heat in the wire. Orbits can be artificially influenced through the use of rocket engines which change the kinetic energy of the body at some point in its path. This is the conversion of chemical or electrical energy to kinetic energy. In this way changes in the orbit shape or orientation can be facilitated. Another method of artificially influencing an orbit is through the use of solar sails or magnetic sails. These forms of propulsion require no propellant or energy input other than that of the Sun, and so can be used indefinitely. See statite for one such proposed use. Orbital decay can occur due to
tidal force The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenom ...
s for objects below the synchronous orbit for the body they're orbiting. The gravity of the orbiting object raises tidal bulges in the primary, and since below the synchronous orbit, the orbiting object is moving faster than the body's surface the bulges lag a short angle behind it. The gravity of the bulges is slightly off of the primary-satellite axis and thus has a component along with the satellite's motion. The near bulge slows the object more than the far bulge speeds it up, and as a result, the orbit decays. Conversely, the gravity of the satellite on the bulges applies
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of t ...
on the primary and speeds up its rotation. Artificial satellites are too small to have an appreciable tidal effect on the planets they orbit, but several moons in the Solar System are undergoing orbital decay by this mechanism. Mars' innermost moon Phobos is a prime example and is expected to either impact Mars' surface or break up into a ring within 50 million years. Orbits can decay via the emission of
gravitational wave Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in ...
s. This mechanism is extremely weak for most stellar objects, only becoming significant in cases where there is a combination of extreme mass and extreme acceleration, such as with
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
s or
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s that are orbiting each other closely.


Oblateness

The standard analysis of orbiting bodies assumes that all bodies consist of uniform spheres, or more generally, concentric shells each of uniform density. It can be shown that such bodies are gravitationally equivalent to point sources. However, in the real world, many bodies rotate, and this introduces
oblateness Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is ...
and distorts the gravity field, and gives a quadrupole moment to the gravitational field which is significant at distances comparable to the radius of the body. In the general case, the gravitational potential of a rotating body such as, e.g., a planet is usually expanded in multipoles accounting for the departures of it from spherical symmetry. From the point of view of satellite dynamics, of particular relevance are the so-called even zonal harmonic coefficients, or even zonals, since they induce secular orbital perturbations which are cumulative over time spans longer than the orbital period. They do depend on the orientation of the body's symmetry axis in the space, affecting, in general, the whole orbit, with the exception of the semimajor axis.


Multiple gravitating bodies

The effects of other gravitating bodies can be significant. For example, the orbit of the Moon cannot be accurately described without allowing for the action of the Sun's gravity as well as the Earth's. One approximate result is that bodies will usually have reasonably stable orbits around a heavier planet or moon, in spite of these perturbations, provided they are orbiting well within the heavier body's Hill sphere. When there are more than two gravitating bodies it is referred to as an n-body problem. Most n-body problems have no closed form solution, although some special cases have been formulated.


Light radiation and stellar wind

For smaller bodies particularly, light and stellar wind can cause significant perturbations to the
attitude Attitude may refer to: Philosophy and psychology * Attitude (psychology), an individual's predisposed state of mind regarding a value * Metaphysics of presence * Propositional attitude, a relational mental state connecting a person to a prop ...
and direction of motion of the body, and over time can be significant. Of the planetary bodies, the motion of
asteroid An asteroid is a minor planet of the Solar System#Inner solar system, inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic o ...
s is particularly affected over large periods when the asteroids are rotating relative to the Sun.


Strange orbits

Mathematicians have discovered that it is possible in principle to have multiple bodies in non-elliptical orbits that repeat periodically, although most such orbits are not stable regarding small perturbations in mass, position, or velocity. However, some special stable cases have been identified, including a planar figure-eight orbit occupied by three moving bodies. Further studies have discovered that nonplanar orbits are also possible, including one involving 12 masses moving in 4 roughly circular, interlocking orbits topologically equivalent to the edges of a
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
. Finding such orbits naturally occurring in the universe is thought to be extremely unlikely, because of the improbability of the required conditions occurring by chance.


Astrodynamics

Orbital mechanics or astrodynamics is the application of
ballistics Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing ...
and
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
to the practical problems concerning the motion of
rocket A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entire ...
s and other
spacecraft A spacecraft is a vehicle or machine designed to spaceflight, fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth ...
. The motion of these objects is usually calculated from
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
and Newton's law of universal gravitation. It is a core discipline within space mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, including spacecraft and natural astronomical bodies such as star systems,
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a ...
s,
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width ...
s, and
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or Coma (cometary), coma, and sometimes also a Comet ta ...
s. Orbital mechanics focuses on spacecraft
trajectories A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete traj ...
, including orbital maneuvers, orbit plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.
General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
is a more exact theory than Newton's laws for calculating orbits, and is sometimes necessary for greater accuracy or in high-gravity situations (such as orbits close to the Sun).


Earth orbits

*
Low Earth orbit A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never m ...
(LEO):
Geocentric orbit A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debr ...
s with altitudes up to 2,000 km (0–1,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a British imperial unit and United States customary unit of distance; both are based on the older English unit of length equal to 5,280 Engli ...
s). * Medium Earth orbit (MEO):
Geocentric orbit A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debr ...
s ranging in altitude from 2,000 km (1,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a British imperial unit and United States customary unit of distance; both are based on the older English unit of length equal to 5,280 Engli ...
s) to just below
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbit ...
at . Also known as an intermediate circular orbit. These are "most commonly at , or , with an orbital period of 12 hours." * Both
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbit ...
(GSO) and geostationary orbit (GEO) are orbits around Earth matching Earth's sidereal rotation period. All geosynchronous and geostationary orbits have a semi-major axis of . All geostationary orbits are also geosynchronous, but not all geosynchronous orbits are geostationary. A geostationary orbit stays exactly above the equator, whereas a geosynchronous orbit may swing north and south to cover more of the Earth's surface. Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). * High Earth orbit:
Geocentric orbit A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debr ...
s above the altitude of
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbit ...
35,786 km (22,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a British imperial unit and United States customary unit of distance; both are based on the older English unit of length equal to 5,280 Engli ...
s).


Scaling in gravity

The gravitational constant ''G'' has been calculated as: * (6.6742 ± 0.001) × 10−11 (kg/m3)−1s−2. Thus the constant has dimension density−1 time−2. This corresponds to the following properties. Scaling of distances (including sizes of bodies, while keeping the densities the same) gives similar orbits without scaling the time: if for example distances are halved, masses are divided by 8, gravitational forces by 16 and gravitational accelerations by 2. Hence velocities are halved and orbital periods and other travel times related to gravity remain the same. For example, when an object is dropped from a tower, the time it takes to fall to the ground remains the same with a scale model of the tower on a scale model of the Earth. Scaling of distances while keeping the masses the same (in the case of point masses, or by adjusting the densities) gives similar orbits; if distances are multiplied by 4, gravitational forces and accelerations are divided by 16, velocities are halved and orbital periods are multiplied by 8. When all densities are multiplied by 4, orbits are the same; gravitational forces are multiplied by 16 and accelerations by 4, velocities are doubled and orbital periods are halved. When all densities are multiplied by 4, and all sizes are halved, orbits are similar; masses are divided by 2, gravitational forces are the same, gravitational accelerations are doubled. Hence velocities are the same and orbital periods are halved. In all these cases of scaling. if densities are multiplied by 4, times are halved; if velocities are doubled, forces are multiplied by 16. These properties are illustrated in the formula (derived from the formula for the orbital period) : GT^2 \rho = 3\pi \left( \frac \right)^3, for an elliptical orbit with semi-major axis ''a'', of a small body around a spherical body with radius ''r'' and average density ''ρ'', where ''T'' is the orbital period. See also Kepler's Third Law.


Patents

The application of certain orbits or orbital maneuvers to specific useful purposes has been the subject of patents.


Tidal locking

Some bodies are tidally locked with other bodies, meaning that one side of the celestial body is permanently facing its host object. This is the case for Earth-
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width ...
and Pluto-Charon system.


See also

* Ephemeris is a compilation of positions of naturally occurring astronomical objects as well as artificial satellites in the sky at a given time or times. * Free drift * Klemperer rosette * List of orbits * Molniya orbit * Orbit determination * Orbital spaceflight * Perifocal coordinate system *
Polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of abo ...
* Radial trajectory * Rosetta orbit *
VSOP model The semi-analytic planetary theory VSOP (French: ''Variations Séculaires des Orbites Planétaires'') is a mathematical model describing long-term changes (secular variation) in the orbits of the planets Mercury to Neptune. The earliest modern sci ...


References


Further reading

* * * Discusses new algorithms for determining the orbits of both natural and artificial celestial bodies. *


External links


CalcTool: Orbital period of a planet calculator
Has wide choice of units. Requires JavaScript.

Requires Java.

includes (calculated) data on Earth orbit variations over the last 50 million years and for the coming 20 million years

Requires JavaScript.

(Rocket and Space Technology)
Orbital simulations
by Varadi, Ghil and Runnegar (2003) provide another, slightly different series for Earth orbit eccentricity, and also a series for orbital inclination. Orbits for the other planets were also calculated, by , but only th
eccentricity data for Earth and Mercury
are available online.
Understand orbits using direct manipulation
Requires JavaScript and Macromedia * {{Authority control Celestial mechanics Periodic phenomena Gravity Astrodynamics Concepts in astronomy