HOME

TheInfoList



OR:

A piston ring is a metallic split ring that is attached to the outer diameter of a
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tig ...
in an internal combustion engine or
steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be trans ...
. The main functions of piston rings in engines are: # Sealing the combustion chamber so that there is minimal loss of gases to the crank case. # Improving heat transfer from the piston to the cylinder wall. # Maintaining the proper quantity of the oil between the piston and the cylinder wall # Regulating engine oil consumption by scraping oil from the cylinder walls back to the sump. Most piston rings are made from
cast iron Cast iron is a class of iron– carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impu ...
or
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
.


Design

Piston rings are designed to seal the gap between the piston and the cylinder wall. If this gap were too small, thermal expansion of the piston could mean the piston seizes in the cylinder, causing serious damage to the engine. On the other hand, a large gap would cause insufficient sealing of the piston rings against the cylinder walls, resulting in excessive blow-by (combustion gases entering the crankcase) and less pressure on the cylinder, reducing the power output of the engine. The sliding motion of the piston ring inside the cylinder wall causes friction losses for the engine. The friction caused by piston rings is approximately 24% of the total mechanical friction losses for the engine. The design of the piston rings is therefore a compromise between minimising friction while achieving good sealing and an acceptable lifespan. Lubrication of piston rings is difficult and has been a driving force to improvements in the quality of
motor oil Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, deterg ...
. The oil must survive high temperatures and harsh conditions with a high-speed sliding contact. Lubrication is particularly difficult as the rings have an oscillating motion rather than continuous rotation (such as in a bearing journal). At the limits of piston movement, the ring stops and reverses direction. This disrupts the normal oil wedge effect of a
hydrodynamic bearing Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing flui ...
, reducing the effectiveness of the lubrication. Rings are also sprung to increase the contact force and to maintain a close seal. The spring force is provided by either the stiffness of the ring itself or by a separate spring behind the seal ring. It is important that rings float freely in their grooves within the piston, so that they can stay in contact with the cylinder. Rings binding in the piston, usually due to a build-up of either combustion products or a breakdown of the lubricating oil, can cause engine failure and is a common cause of failure for diesel engines.


Number of rings

Sealing is often achieved by multiple rings, each with their own function, using a metal-on-metal sliding contact. Most pistons have at least two piston rings per cylinder. Automotive piston engines typically have three rings per cylinder. The top two rings— known as ''compression rings''— are primarily for sealing the combustion chamber. The bottom ring— known as the ''oil control ring''— is primarily for controlling the supply of oil to the cylinder wall, in order to lubricate the piston skirt and the oil control rings.


Ring construction

The compression rings in an automotive engine typically have a rectangular or keystone shaped cross-section. The upper compression ring typically has a barrel profile for the periphery, while the lower compression ring typically has a taper napier facing. Some engines also use a taper facing for the top ring, and simple plain-faced rings were used in the past. Oil control rings are typically made from either a single piece of cast iron, multiple pieces of steel, or steel/iron with a helical spring backing to create the tension required for a close seal. Cast iron oil rings and rings with a helical spring backing have two scraping lands of various detailed form. On the other hand, multi-piece steel oil control rings usually consist of two thin steel rings (called ''rails'') with a spacer-expander spring between them to keep the two rails apart and provide radial pressure. The gap in the piston ring compresses to a few thousandths of an inch when inside the cylinder bore. Ring gap shapes include square cut, angle cut, tite joint, step cut, hook step and mitre step.


History

Early steam engines used a hemp packing to seal the combustion chamber, which caused high frictional resistance and did not provide a very effective seal. The first use of a piston ring in the cylinders of a steam engine appears in 1825 by Neil Snodgrass, a Glasgow engineer and mill-owner, for use in his own machines. This used springs to keep the seal steam-tight. From use within the mill this was experimented on the steamer "Caledonia" which plied the Gareloch. The modern design of a metallic split-ring was invented by John Ramsbottom in the 1850s. Ramsbottom's initial design in 1852 was a circular shape, however these wore unevenly and were not successful. In 1854, a revised design was claimed to have a lifespan of up to . This was based on the discovery that a perfectly round (prior to installation) ring with a split in it does not exert an even pressure on the cylinder walls once installed. The revised piston ring was manufactured to an out-of-round shape, so that it would exert even pressure once installed in the cylinder. An 1855 patent documented this change. The switch to metallic piston rings dramatically reduced the frictional resistance, the leakage of steam, and the mass of the piston, leading to significant increases in power and efficiency and longer maintenance intervals.


Engine wear

Piston rings are subject to wear as they move up and down the cylinder bore, due to their own inherent load and due to the gas load acting on the ring. To minimize this, they are made of wear-resistant materials, such as cast iron and steel, and are coated or treated to enhance the wear resistance. Coatings used in modern motorcycles include
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hardne ...
, nitride, or ceramic coating made by plasma deposition or
physical vapour deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
(PVD). Most modern diesel engines have top rings coated with a modified chromium coating (known as CKS or GDC), which has aluminium oxide or diamond particles respectively included in the chrome surface. In two-stroke engines, the port design is also an important factor for the lifespan of the piston rings.


See also

*
Cylinder (engine) In a reciprocating engine, the cylinder is the space in which a piston travels. The inner surface of the cylinder is formed from either a thin metallic liner (also called "sleeve") or a surface coating applied to the engine block. A piston is s ...
* Obturator ring


References

{{Authority control Rings Seals (mechanical) Engine technology