Early stages
A well dispersed colloidal suspension consists of individual, separated particles and is stabilized by repulsive inter-particle forces. When the repulsive forces weaken or become attractive through the addition of a coagulant, particles start to aggregate. Initially, particle doublets A2 will form from singlets A1 according to the schemeW. B. Russel, D. A. Saville, W. R. Schowalter,''Colloidal Dispersions'',Cambridge University Press, 1989. : A1 + A1 → A2 In the early stage of the aggregation process, the suspension mainly contains individual particles. The rate of this phenomenon is characterized by the aggregation rate coefficient ''k''. Since doublet formation is a second order rate process, the units of this coefficients are m3s−1 since particle concentrations are expressed as particle number per unit volume (m−3). Since absolute aggregation rates are difficult to measure, one often refers to the dimensionless stability ratio ''W'' = ''k''fast/''k'' where ''k''fast is the aggregation rate coefficient in the fast regime, and ''k'' the coefficient at the conditions of interest. The stability ratio is close to unity in the fast regime, increases in the slow regime, and becomes very large when the suspension is stable. Often, colloidal particles are suspended in water. In this case, they accumulate a surface charge and an electrical double layer forms around each particle. The overlap between the diffuse layers of two approaching particles results in a repulsive double layer interaction potential, which leads to particle stabilization. When salt is added to the suspension, the electrical double layer repulsion is screened, and van der Waals attraction become dominant and induce fast aggregation. The figure on the right shows the typical dependence of the stability ratio ''W'' versus the electrolyte concentration, whereby the regimes of slow and fast aggregation are indicated. The table below summarizes the critical coagulation concentration (CCC) ranges for different net charge of the counter ion. The charge is expressed in units ofLater stages
As the aggregation process continues, larger clusters form. The growth occurs mainly through encounters between different clusters, and therefore one refers to cluster-cluster aggregation process. The resulting clusters are irregular, but statistically self-similar. They are examples of mass fractals, whereby their mass ''M'' grows with their typical size characterized by the radius of gyration ''R''g as a power-law : where ''d'' is the mass fractal dimension. Depending whether the aggregation is fast or slow, one refers to diffusion limited cluster aggregation (DLCA) or reaction limited cluster aggregation (RLCA). The clusters have different characteristics in each regime. DLCA clusters are loose and ramified (''d'' ≈ 1.8), while the RLCA clusters are more compact (''d'' ≈ 2.1). The cluster size distribution is also different in these two regimes. DLCA clusters are relatively monodisperse, while the size distribution of RLCA clusters is very broad. The larger the cluster size, the faster their settling velocity. Therefore, aggregating particles sediment and this mechanism provides a way for separating them from suspension. At higher particle concentrations, the growing clusters may interlink, and form a particle gel. Such a gel is an elastic solid body, but differs from ordinary solids by having a very low elastic modulus.Homoaggregation versus heteroaggregation
When aggregation occurs in a suspension composed of similar monodisperse colloidal particles, the process is called ''homoaggregation'' (or ''homocoagulation''). When aggregation occurs in a suspension composed of dissimilar colloidal particles, one refers to ''heteroaggregation'' (or ''heterocoagulation''). The simplest heteroaggregation process occurs when two types of monodisperse colloidal particles are mixed. In the early stages, three types of doublets may form : A + A → A2 : B + B → B2 : A + B → AB While the first two processes correspond to homoaggregation in pure suspensions containing particles A or B, the last reaction represents the actual heteroaggregation process. Each of these reactions is characterized by the respective aggregation coefficients ''k''AA, ''k''BB, and ''k''AB. For example, when particles A and B bear positive and negative charge, respectively, the homoaggregation rates may be slow, while the heteroaggregation rate is fast. In contrast to homoaggregation, the heteroaggregation rate accelerates with decreasing salt concentration. Clusters formed at later stages of such heteroaggregation processes are even more ramified that those obtained during DLCA (''d'' ≈ 1.4). An important special case of a heteroaggregation process is the deposition of particles on a substrate. Early stages of the process correspond to the attachment of individual particles to the substrate, which can be pictures as another, much larger particle. Later stages may reflect blocking of the substrate through repulsive interactions between the particles, while attractive interactions may lead to multilayer growth, and is also referred to as ripening. These phenomena are relevant in membrane or filter fouling.Experimental techniques
Numerous experimental techniques have been developed to study particle aggregation. Most frequently used are time-resolved optical techniques that are based on transmittance or scattering of light. Light transmission. The variation of transmitted light through an aggregating suspension can be studied with a regular spectrophotometer in the visible region. As aggregation proceeds, the medium becomes more turbid, and its absorbance increases. The increase of the absorbance can be related to the aggregation rate constant ''k'' and the stability ratio can be estimated from such measurements. The advantage of this technique is its simplicity. Light scattering. These techniques are based on probing the scattered light from an aggregating suspension in a time-resolved fashion. Static light scattering yields the change in the scattering intensity, while dynamic light scattering the variation in the apparent hydrodynamic radius. At early-stages of aggregation, the variation of each of these quantities is directly proportional to the aggregation rate constant ''k''. At later stages, one can obtain information on the clusters formed (e.g., fractal dimension). Light scattering works well for a wide range of particle sizes. Multiple scattering effects may have to be considered, since scattering becomes increasingly important for larger particles or larger aggregates. Such effects can be neglected in weakly turbid suspensions. Aggregation processes in strongly scattering systems have been studied with transmittance, backscattering techniques orRelevance
Particle aggregation is a widespread phenomenon, which spontaneously occurs in nature but is also widely explored in manufacturing. Some examples include. Formation of river delta. When river water carrying suspended sediment particles reaches salty water, particle aggregation may be one of the factors responsible for river delta formation. Charged particles are stable in river's fresh water containing low levels of salt, but they become unstable in sea water containing high levels of salt. In the latter medium, the particles aggregate, the larger aggregates sediment, and thus create the river delta. Papermaking. Retention aids are added to the pulp to accelerate paper formation. These aids are coagulating aids, which accelerate the aggregation between the cellulose fibers and filler particles. Frequently, cationic polyelectrolytes are being used for that purpose. Water treatment. Treatment of municipal waste water normally includes a phase where fine solid particles are removed. This separation is achieved by addition of a flocculating or coagulating agent, which induce the aggregation of the suspended solids. The aggregates are normally separated by sedimentation, leading to sewage sludge. Commonly used flocculating agents in water treatment include multivalent metal ions (e.g., Fe3+ or Al3+), polyelectrolytes, or both. Cheese making. The key step in cheese production is the separation of the milk into solid curds and liquid whey. This separation is achieved by inducing the aggregation processes between casein micelles by acidifying the milk or adding rennet. The acidification neutralizes the carboxylate groups on the micelles and induces the aggregation.See also
* Aerosol * Colloid * Clarifying agent * Double layer forces * DLVO theory (stability of colloids) * Electrical double layer * Emulsion *References
External links