HOME

TheInfoList



OR:

A pair-instability supernova is a type of
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
predicted to occur when
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specific ...
, the production of free
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s and
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s in the collision between
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
and energetic
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s, temporarily reduces the internal radiation pressure supporting a supermassive star's core against
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind. Pair-instability
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e can only happen in stars with a mass range from around 130 to 250
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es and low to moderate
metallicity In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as a ...
(low abundance of elements other than hydrogen and helium – a situation common in
Population III stars During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
).


Physics


Photon emission

Photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s given off by a body in thermal equilibrium have a
black-body spectrum A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
with an energy density proportional to the fourth power of the temperature, as described by the
Stefan–Boltzmann law The Stefan–Boltzmann law describes the power radiated from a black body in terms of its temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit surface area of a black body across all wavelengths ...
. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the frequency, and the energy, of the peak emission is directly proportional to the temperature.


Photon pressure in stars

In very massive, hot stars with interior temperatures above about (), photons produced in the
stellar core A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of h ...
are primarily in the form of very high energy-level
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s. The pressure from these gamma rays fleeing outward from the core helps to hold up the upper layers of the star against the inward pull of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. If the level of gamma rays (the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
) is reduced, then the outer layers of the star will begin to collapse inwards. Gamma rays with sufficiently high energy can interact with nuclei, electrons, or one another. One of those interactions is to form pairs of particles, such as electron-positron pairs, and these pairs can also meet and annihilate each other to create gamma rays again, all in accordance with
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's mass-energy equivalence equation At the very high density of a large stellar core, pair production and annihilation occur rapidly. Gamma rays, electrons, and positrons are overall held in
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
, ensuring the star's core remains stable. By random fluctuation, the sudden heating and compression of the core can generate gamma rays energetic enough to be converted into an avalanche of electron-positron pairs. This reduces the pressure. When the collapse stops, the positrons find electrons and the pressure from gamma rays is driven up, again. The population of positrons provides a brief reservoir of new gamma rays as the expanding supernova's core pressure drops.


Pair-instability

As temperatures and gamma ray energies increase, more and more gamma ray energy is absorbed in creating electron–positron pairs. This reduction in gamma ray energy density reduces the radiation pressure that resists gravitational collapse and supports the outer layers of the star. The star contracts, compressing and heating the core, thereby increasing the rate of energy production. This increases the energy of the gamma rays that are produced, making them more likely to interact, and so increases the rate at which energy is absorbed in further pair production. As a result, the stellar core loses its support in a runaway process, in which gamma rays are created at an increasing rate; but more and more of the gamma rays are absorbed to produce electron–positron pairs, and the annihilation of the electron–positron pairs is insufficient to halt further contraction of the core, resulting in a supernova.


Stellar susceptibility

For a star to undergo pair-instability supernova, the increased creation of positron/electron pairs by gamma ray collisions must reduce outward pressure enough for inward gravitational pressure to overwhelm it. High rotational speed and/or metallicity can prevent this. Stars with these characteristics still contract as their outward pressure drops, but unlike their slower or less metal-rich cousins, these stars continue to exert enough outward pressure to prevent gravitational collapse. Stars formed by collision mergers having a metallicity ''Z'' between 0.02 and 0.001 may end their lives as pair-instability supernovae if their mass is in the appropriate range. Very large high-metallicity stars are probably unstable due to the
Eddington limit The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The stat ...
, and would tend to shed mass during the formation process.


Stellar behavior

Several sources describe the stellar behavior for large stars in pair-instability conditions.


Below 100 solar masses

Gamma rays produced by stars of fewer than 100 or so solar masses are not energetic enough to produce electron-positron pairs. Some of these stars will undergo supernovae of a different type at the end of their lives, but the causative mechanisms do not involve pair-instability.


100 to 130 solar masses

These stars are large enough to produce gamma rays with enough energy to create electron-positron pairs, but the resulting net reduction in counter-gravitational pressure is insufficient to cause the core-overpressure required for supernova. Instead, the contraction caused by pair-creation provokes increased thermonuclear activity within the star that repulses the inward pressure and returns the star to equilibrium. It is thought that stars of this size undergo a series of these pulses until they shed sufficient mass to drop below 100 solar masses, at which point they are no longer hot enough to support pair-creation. Pulsing of this nature may have been responsible for the variations in brightness experienced by Eta Carinae in 1843, though this explanation is not universally accepted.


130 to 250 solar masses

For very high-mass stars, with mass at least 130 and up to perhaps roughly 250 solar masses, a true pair-instability supernova can occur. In these stars, the first time that conditions support pair production instability, the situation runs out of control. The collapse proceeds to efficiently compress the star's core; the overpressure is sufficient to allow runaway nuclear fusion to burn it in several seconds, creating a thermonuclear explosion. With more thermal energy released than the star's
gravitational binding energy The gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state. A gravitationally bound system has a lower (''i.e.'', more negative) gravitation ...
, it is completely disrupted; no
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
or other remnant is left behind. This is predicted to contribute to a "
mass gap In quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of ...
" in the mass distribution of
stellar black hole A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a gam ...
s. (This "upper mass gap" is to be distinguished from a suspected "lower mass gap" in the range of a few solar masses.) In addition to the immediate energy release, a large fraction of the star's core is transformed to
nickel-56 Naturally occurring nickel (28Ni) is composed of five stable isotopes; , , , and , with being the most abundant (68.077% natural abundance). 26 radioisotopes have been characterised with the most stable being with a half-life of 76,000 years, ...
, a radioactive
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
which decays with a half-life of 6.1 days into
cobalt-56 Naturally occurring cobalt (Co) consists of a single stable isotope, Co. Twenty-eight radioisotopes have been characterized; the most stable are Co with a half-life of 5.2714 years, Co (271.8 days), Co (77.27 days), and Co (70.86 days). All other ...
.
Cobalt-56 Naturally occurring cobalt (Co) consists of a single stable isotope, Co. Twenty-eight radioisotopes have been characterized; the most stable are Co with a half-life of 5.2714 years, Co (271.8 days), Co (77.27 days), and Co (70.86 days). All other ...
has a half-life of 77 days and then further decays to the stable isotope
iron-56 Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. N ...
(see
Supernova nucleosynthesis Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processe ...
). For the
hypernova A hypernova (sometimes called a collapsar) is a very energetic supernova thought to result from an extreme core-collapse scenario. In this case, a massive star (>30 solar masses) collapses to form a rotating black hole emitting twin energetic je ...
SN 2006gy SN 2006gy was an extremely energetic supernova, also referred to as a hypernova or quark-nova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol,
, studies indicate that perhaps 40 solar masses of the original star were released as Ni-56, almost the entire mass of the star's core regions. Collision between the exploding star core and gas it ejected earlier, and radioactive decay, release most of the visible light.


250 solar masses or more

A different reaction mechanism,
photodisintegration Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The ...
, follows the initial pair-instability collapse in stars of at least 250 solar masses. This
endothermic In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. p. ...
(energy-absorbing) reaction absorbs the excess energy from the earlier stages before the runaway fusion can cause a hypernova explosion; the star then collapses completely into a black hole.


Appearance


Luminosity

Pair-instability supernovae are popularly thought to be highly luminous. This is only the case for the most massive progenitors since the luminosity depends strongly on the ejected mass of radioactive 56Ni. They can have peak luminosities of over 1037 W, brighter than type Ia supernovae, but at lower masses peak luminosities are less than 1035 W, comparable to or less than typical type II supernovae.


Spectrum

The spectra of pair-instability supernovae depend on the nature of the progenitor star. Thus they can appear as type II or type Ib/c supernova spectra. Progenitors with a significant remaining hydrogen envelope will produce a type II supernova, those with no hydrogen but significant helium will produce a type Ib, and those with no hydrogen and virtually no helium will produce a type Ic.


Light curves

In contrast to the spectra, the
light curves In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequ ...
are quite different from the common types of supernova. The light curves are highly extended, with peak luminosity occurring months after onset. This is due to the extreme amounts of 56Ni expelled, and the optically dense ejecta, as the star is entirely disrupted.


Remnant

Pair-instability supernovae completely destroy the progenitor star and do not leave behind a neutron star or black hole. The entire mass of the star is ejected, so a nebular remnant is produced and many solar masses of heavy elements are ejected into interstellar space.


Pair-instability supernovae candidates

Some supernovae candidates for classification as pair-instability supernovae include: *
SN 2006gy SN 2006gy was an extremely energetic supernova, also referred to as a hypernova or quark-nova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol,
*
SN 2007bi SN 2007bi was an extremely energetic supernova discovered early in 2007 by the international Nearby Supernova Factory based at the U.S. Department of Energy's Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL ...
, *
SN 2213-1745 SN 2213-1745 was an extremely remote superluminous supernova (SLSN), which occurred in between November 2004 and June 2005. Its peak far-ultraviolet absolute magnitude reached −21.2, which was comparable to the total absolute magnitude of its h ...
* SN 1000+0216, * SN 2010mb * OGLE14-073, *
SN 2016aps SN 2016aps (also known as PS16aqy and AT2016aps) is the Luminosity, brightest (as of April 2020) supernova explosion ever recorded. In addition to the sheer amount of energy released, an unusually large amount of the energy was released in the fo ...
* SN 2016iet,


See also

*
Pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specific ...
*
Pulsational pair-instability supernova A pulsational pair-instability supernova is a supernova impostor event that generally occurs in stars at around 100 to 130 solar mass (), as opposed to a typical pair-instability supernova which occurs in stars of 130 to . Like pair-instability sup ...
*
Thermal runaway Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing energy that further increases temperature. Thermal runaway occurs in situations where an increase in temperature changes the conditions in a way t ...
*
Type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
, "thermonuclear supernova" *
Intermediate-mass black hole An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate obje ...


References


External links


List of possible pair-instability supernovae
a
The Open Supernova Catalog
{{Supernovae Supernovae Hypernovae de:Supernova#Paarinstabilitätssupernova