The term p-process (''p'' for
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
) is used in two ways in the scientific literature concerning the
astrophysical origin of the elements (
nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
). Originally it referred to a proton capture process which was proposed to be the source of certain, naturally occurring, neutron-deficient
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of the
elements from
selenium
Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
to
mercury.
These
nuclide
Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state.
The word ''nuclide'' was coined by the A ...
s are called
p-nuclei and their origin is still not completely understood. Although it was shown that the originally suggested process cannot produce the p-nuclei, later on the term p-process was sometimes used to generally refer to any
nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
process supposed to be responsible for the p-nuclei.
Often, the two meanings are confused. Recent scientific literature therefore suggests to use the term p-process only for the actual proton capture process, as it is customary with other nucleosynthesis processes in astrophysics.
The proton capture p-process
Proton-rich nuclides can be produced by sequentially adding one or more protons to an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
. Such a
nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
of type (p,γ) is called ''proton capture reaction''. By adding a proton to a nucleus, the
element is changed because the chemical element is defined by the
proton number of a nucleus. At the same time the ratio of protons to
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s is changed, resulting in a more neutron-deficient isotope of the next element. This led to the original idea for the production of p-nuclei: free protons (the nuclei of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s are present in stellar
plasmas) should be captured on heavy nuclei (''seed nuclei'') also already present in the stellar plasma (previously produced in the
''s''-process and/or
''r''-process).
Such proton captures on
stable nuclide
Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionu ...
s (or nearly stable), however, are not very efficient in producing p-nuclei, especially the heavier ones, because the
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
increases with each added proton, leading to an increased repulsion of the next proton to be added, according to
Coulomb's law
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
. In the context of nuclear reactions this is called a
Coulomb barrier. The higher the Coulomb barrier, the more
kinetic energy
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
a proton requires to get close to a nucleus and be captured by it. The average energy of the available protons is given by the
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
of the stellar plasma. Even if this temperature could be increased arbitrarily (which is not the case in stellar environments), protons would be removed faster from a nucleus by
photodisintegration
Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The ...
than they could be captured at high temperature. A possible alternative would be to have a very large number of protons available to increase the effective number of proton captures per second without having to raise the temperature too much. Such conditions, however, are not found in
core-collapse supernovae which were supposed to be the site of the p-process.
Proton captures at extremely high proton densities are called
rapid proton capture processes. They are distinct from the p-process not only by the required high proton density but also by the fact that very short-lived
radionuclides
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
are involved and the reaction path is located close to the
proton drip line
The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.
An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of m ...
. Rapid proton capture processes are the
rp-process
The rp-process (rapid proton capture process) consists of consecutive proton captures onto seed nuclei to produce heavier elements. It is a nucleosynthesis process and, along with the ''s''-process and the ''r''-process, may be responsible fo ...
, the
νp-process, and the
pn-process.
History
The term p-process was originally proposed in the famous
B2FH paper in 1957. The authors assumed that this process was solely responsible for the p-nuclei and proposed that it occurs in the hydrogen-shell (see also
stellar evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
) of a
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
exploding as a
type II supernova
A Type II supernova or SNII (plural: ''supernovae'') results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type ...
.
It was shown later that the required conditions are not found in such supernovae.
At the same time as B
2FH,
Alastair Cameron independently realized the necessity to add another nucleosynthesis process to
neutron capture nucleosynthesis but simply mentioned proton captures without assigning a special name to the process. He also thought about alternatives, for example photodisintegration (called the
γ-process today) or a combination of p-process and photodisintegration.
See also
*
p-nuclei
*
Nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
*
rp-process
The rp-process (rapid proton capture process) consists of consecutive proton captures onto seed nuclei to produce heavier elements. It is a nucleosynthesis process and, along with the ''s''-process and the ''r''-process, may be responsible fo ...
*
r-process
In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
*
s-process
The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
References
{{supernovae
Nuclear physics
Nucleosynthesis
Supernovae
Proton
Concepts in stellar astronomy