HOME

TheInfoList



OR:

The origin and function of meiosis are currently not well understood scientifically, and would provide fundamental insight into the evolution of sexual reproduction in
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
. There is no current consensus among biologists on the questions of how sex in eukaryotes arose in
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
, what basic function
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote th ...
serves, and why it is maintained, given the basic two-fold cost of sex. It is clear that it evolved over 1.2 billion years ago, and that almost all species which are descendants of the original sexually reproducing species are still sexual reproducers, including
plants Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclude ...
,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
, and
animals Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
.
Meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
is a key event of the sexual cycle in eukaryotes. It is the stage of the life cycle when a cell gives rise to haploid cells (
gamete A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
s) each having half as many
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s as the parental cell. Two such haploid gametes, ordinarily arising from different individual
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
s, fuse by the process of
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Pro ...
, thus completing the sexual cycle. Meiosis is ubiquitous among eukaryotes. It occurs in single-celled organisms such as yeast, as well as in multicellular organisms, such as humans. Eukaryotes arose from
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
s more than 2.2 billion years ago and the earliest eukaryotes were likely single-celled organisms. To understand sex in eukaryotes, it is necessary to understand (1) how meiosis arose in single celled eukaryotes, and (2) the function of meiosis.


Origin of meiosis

There are two conflicting theories on how meiosis arose. One is that meiosis evolved from prokaryotic sex ( bacterial recombination) as eukaryotes evolved from prokaryotes.Harris Bernstein, Carol Bernstein, Evolutionary Origin of Recombination during Meiosis, BioScience, Volume 60, Issue 7, July/August 2010, Pages 498–505, https://doi.org/10.1525/bio.2010.60.7.5Bernstein H, Bernstein C (2017). "Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis". In Witzany G (ed.). Biocommunication of Archaea. Springer Nature. pp. 301–117. . . The other is that meiosis arose from mitosis.


From prokaryotic sex

In prokaryotic sex, DNA from one prokaryote is taken up by another prokaryote and its information integrated into the DNA of the recipient prokaryote. In extant prokaryotes the donor DNA can be transferred either by transformation or
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change ...
. Transformation in which DNA from one prokaryote is released into the surrounding medium and then taken up by another prokaryotic cell may have been the earliest form of sexual interaction. One theory on how meiosis arose is that it evolved from transformation. According to this view, the evolutionary transition from prokaryotic sex to eukaryotic sex was continuous. Transformation, like meiosis, is a complex process requiring the function of numerous gene products. A key similarity between prokaryotic sex and eukaryotic sex is that DNA originating from two different individuals (parents) join up so that homologous sequences are aligned with each other, and this is followed by exchange of genetic information (a process called genetic recombination). After the new recombinant chromosome is formed it is passed on to progeny. When genetic recombination occurs between DNA molecules originating from different parents, the recombination process is catalyzed in
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
and
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
by
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
that have similar functions and that are evolutionarily related. One of the most important enzymes catalyzing this process in bacteria is referred to as
RecA RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolog ...
, and this enzyme has two functionally similar counterparts that act in eukaryotic meiosis,
RAD51 DNA repair protein RAD51 homolog 1 is a protein encoded by the gene ''RAD51''. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to th ...
and
DMC1 Meiotic recombination protein DMC1/LIM15 homolog is a protein that in humans is encoded by the ''DMC1'' gene. Meiotic recombination protein Dmc1 is a homolog of the bacterial strand exchange protein RecA. Dmc1 plays the central role in homologou ...
. Support for the theory that meiosis arose from prokaryotic transformation comes from the increasing evidence that early diverging lineages of eukaryotes have the core genes for meiosis. This implies that the precursor to meiosis was already present in the prokaryotic ancestor of eukaryotes. For instance the common intestinal parasite '' Giardia intestinalis'', a simple eukaryotic protozoan was, until recently, thought to be descended from an early diverging eukaryotic lineage that lacked sex. However, it has since been shown that ''G. intestinalis'' contains within its genome a core set of genes that function in meiosis, including five genes that function only in meiosis. In addition, ''G. intestinalis'' was recently found to undergo a specialized, sex-like process involving meiosis gene homologs. This evidence, and other similar examples, suggest that a primitive form of meiosis, was present in the common ancestor of all eukaryotes, an ancestor that arose from an antecedent prokaryote.


From mitosis

Mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintai ...
is the normal process in eukaryotes for cell division; duplicating chromosomes and segregating one of the two copies into each of the two daughter cells, in contrast with meiosis. The mitosis theory states that meiosis evolved from mitosis. According to this theory, early eukaryotes evolved mitosis first, became established, and only then did meiosis and sexual reproduction arise. Supporting this idea are observations of some features, such as the meiotic spindles that draw chromosome sets into separate daughter cells upon cell division, as well as processes regulating cell division that employ the same, or similar molecular machinery. Yet there is no compelling evidence for a period in the early
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
of eukaryotes, during which meiosis and accompanying sexual capability did not yet exist. In addition, as noted by Wilkins and Holliday, there are four novel steps needed in meiosis that are not present in mitosis. These are: (1) pairing of homologous chromosomes, (2) extensive recombination between homologs; (3) suppression of sister
chromatid A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chr ...
separation in the first meiotic division; and (4) avoiding chromosome replication during the second meiotic division. Although the introduction of these steps seems to be complicated, Wilkins and Holliday argue that only one new step, homolog synapsis, was particularly initiated in the evolution of meiosis from
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintai ...
. Meanwhile, two of the other novel features could have been simple modifications, and extensive recombination could have evolved later.


Coevolution with mitosis

If meiosis arose from prokaryotic transformation, during the early evolution of eukaryotes, mitosis and meiosis could have evolved in parallel. Both processes use shared molecular components, where mitosis evolved from the molecular machinery used by prokaryotes for DNA replication and segregation, and meiosis evolved from the prokaryotic sexual process of transformation. However, meiosis also made use of the evolving molecular machinery for DNA replication and segregation.


Function


Stress-induced sex

Abundant evidence indicates that facultative sexual eukaryotes tend to undergo sexual reproduction under stressful conditions. For instance, the budding yeast ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have b ...
'' (a single-celled fungus) reproduces mitotically (asexually) as diploid cells when nutrients are abundant, but switches to meiosis (sexual reproduction) under starvation conditions. The unicellular green alga, ''
Chlamydomonas reinhardtii ''Chlamydomonas reinhardtii'' is a single-cell green alga about 10 micrometres in diameter that swims with two flagella. It has a cell wall made of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an eye ...
'' grows as vegetative cells in nutrient rich growth medium, but depletion of a source of nitrogen in the medium leads to gamete fusion, zygote formation and meiosis. The fission yeast '' Schizosaccharomyces pombe'', treated with H2O2 to cause oxidative stress, substantially increases the proportion of cells which undergo meiosis. The simple multicellular eukaryote '' Volvox carteri'' undergoes sex in response to oxidative stress or stress from heat shock. These examples, and others, suggest that, in simple single-celled and multicellular eukaryotes, meiosis is an adaptation to respond to stress. Prokaryotic sex also appears to be an adaptation to stress. For instance, transformation occurs near the end of logarithmic growth, when amino acids become limiting in ''Bacillus subtilis'', or in ''Haemophilus influenzae'' when cells are grown to the end of logarithmic phase. In ''Streptococcus mutans'' and other streptococci, transformation is associated with high cell density and biofilm formation. In ''Streptococcus pneumoniae'', transformation is induced by the DNA damaging agent mitomycin C. These, and other, examples indicate that prokaryotic sex, like meiosis in simple eukaryotes, is an adaptation to stressful conditions. This observation suggests that the natural selection pressures maintaining meiosis in eukaryotes are similar to the selective pressures maintaining prokaryotic sex. This similarity suggests continuity, rather than a gap, in the evolution of sex from prokaryotes to eukaryotes. Stress is, however, a general concept. What is it specifically about stress that needs to be overcome by meiosis? And what is the specific benefit provided by meiosis that enhances survival under stressful conditions?


DNA repair

In one theory, meiosis is primarily an adaptation for repairing
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
. Environmental stresses often lead to oxidative stress within the cell, which is well known to cause DNA damage through the production of reactive forms of oxygen, known as
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS). DNA damages, if not repaired, can kill a cell by blocking DNA replication, or transcription of essential genes. When only one strand of the DNA is damaged, the lost information (nucleotide sequence) can ordinarily be recovered by repair processes that remove the damaged sequence and fill the resulting gap by copying from the opposite intact strand of the double helix. However, ROS also cause a type of damage that is difficult to repair, referred to as double-strand damage. One common example of double-strand damage is the double-strand break. In this case, genetic information (nucleotide sequence) is lost from both strands in the damaged region, and proper information can only be obtained from another intact chromosome homologous to the damaged chromosome. The process that the cell uses to accurately accomplish this type of repair is called recombinational repair. Meiosis is distinct from mitosis in that a central feature of meiosis is the alignment of homologous chromosomes followed by recombination between them. The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. In contrast, recombination between sister chromosomes cannot repair double-strand damages arising prior to the replication which produced them. Thus on this view, the adaptive advantage of meiosis is that it facilitates recombinational repair of DNA damage that is otherwise difficult to repair, and that occurs as a result of stress, particularly oxidative stress. http://www.hummingbirds.arizona.edu/Faculty/Michod/Downloads/IGE%20review%20sex.pdf If left unrepaired, this damage would likely be lethal to gametes and inhibit production of viable progeny. Even in multicellular eukaryotes, such as humans, oxidative stress is a problem for cell survival. In this case, oxidative stress is a byproduct of oxidative cellular respiration occurring during metabolism in all cells. In humans, on average, about 50 DNA double-strand breaks occur per cell in each cell generation. Meiosis, which facilitates recombinational repair between non-sister chromosomes, can efficiently repair these prevalent damages in the DNA passed on to germ cells, and consequently prevent loss of fertility in humans. Thus with the theory that meiosis arose from prokaryotic sex, recombinational repair is the selective advantage of meiosis in both single celled eukaryotes and multicellular eukaryotes, such as humans. An argument against this hypothesis is that adequate repair mechanisms including those involving recombination already exist in prokaryotes. Prokaryotes do have DNA repair mechanism enriched with recombinational repair, and the existence of prokaryotic life in severe environment indicates the extreme efficiency of this mechanism to help them survive many DNA damages related to the environment. This implies that an extra costly repair in the form of meiosis would be unnecessary. However, most of these mechanisms cannot be as accurate as meiosis and are possibly more mutagenic than the repair mechanism provided by meiosis. They primarily do not require a second homologous chromosome for the recombination that promotes a more extensive repair. Thus, despite the efficiency of recombinational repair involving sister chromatids, the repair still needs to be improved, and another type of repair is required. Moreover, due to the more extensive homologous recombinational repair in meiosis in comparison to the repair in mitosis, meiosis as a repair mechanism can accurately remove any damage that arises at any stage of the cell cycle more than mitotic repair mechanism can do and was, therefore, naturally selected. In contrast, the sister chromatid in mitotic recombination could have been exposed to similar amount of stress, and, thus, this type of recombination, instead of eliminating the damage, could actually spread the damage and decrease fitness.


Prophase I arrest

Female mammals and birds are born possessing all the oocytes needed for future ovulations, and these
oocyte An oocyte (, ), oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ...
s are arrested at the prophase I stage of
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
. In humans, as an example, oocytes are formed between three and four months of
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pr ...
within the fetus and are therefore present at birth. During this prophase I arrested stage (
dictyate The dictyate or dictyoteneMedical Physiology, Boron & Boulpaep, , Elsevier Saunders 2005. Updated edition. 1300 pages. is a prolonged resting phase in oogenesis. It occurs in the stage of meiotic prophase I in ootidogenesis. It starts late in fetal ...
), which may last for many years, four copies of the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
are present in the oocytes. The arrest of ooctyes at the four genome copy stage was proposed to provide the informational redundancy needed to repair damage in the DNA of the
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
. The repair process used likely involves
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
al repair. Prophase arrested oocytes have a high capability for efficient repair of DNA damages. The adaptive function of the DNA repair capability during meiosis appears to be a key quality control mechanism in the female germ line and a critical determinant of
fertility Fertility is the capability to produce offspring through reproduction following the onset of sexual maturity. The fertility rate is the average number of children born by a female during her lifetime and is quantified demographically. Ferti ...
.


Genetic diversity

Another hypothesis to explain the function of meiosis is that stress is a signal to the cell that the environment is becoming adverse. Under this new condition, it may be beneficial to produce progeny that differ from the parent in their genetic make up. Among these varied progeny, some may be more adapted to the changed condition than their parents. Meiosis generates genetic variation in the diploid cell, in part by the exchange of genetic information between the pairs of chromosomes after they align (recombination). Thus, on this view, an advantage of meiosis is that it facilitates the generation of genomic diversity among progeny, allowing adaptation to adverse changes in the environment. However, in the presence of a fairly stable environment, individuals surviving to reproductive age have genomes that function well in their current environment. This raises the question of why such individuals should risk shuffling their genes with those of another individual, as occurs during meiotic recombination? Considerations such as this have led many investigators to question whether genetic diversity is a major adaptive advantage of sex.


See also

*
DNA repair DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
*
Giardia ''Giardia'' ( or ) is a genus of anaerobic flagellated protozoan parasite Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and ...
*
Oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
*
Asexual reproduction Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the ...
, ways to avoid the two-fold cost of sexual reproduction **
Apomixis In botany, apomixis is asexual reproduction without fertilization. Its etymology is Greek for "away from" + "mixing". This definition notably does not mention meiosis. Thus "normal asexual reproduction" of plants, such as propagation from cuttin ...
**
Parthenogenesis Parthenogenesis (; from the Greek grc, παρθένος, translit=parthénos, lit=virgin, label=none + grc, γένεσις, translit=génesis, lit=creation, label=none) is a natural form of asexual reproduction in which growth and developmen ...


References

{{Evolution Mitosis DNA repair Meiosis