Oxyselenides
   HOME

TheInfoList



OR:

Oxyselenides are a group of
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s that contain
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and selenium atoms (Figure 1). Oxyselenides can form a wide range of structures in compounds containing various
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s, and thus can exhibit a wide range of properties. Most importantly, oxyselenides have a wide range of
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, which can be controlled with changes in temperature in order to adjust their thermoelectric performance. Current research on oxyselenides indicates their potential for significant application in electronic materials.


Synthesis

The first oxyselenide to be
crystallized Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely depos ...
was manganese oxyselenide in 1900. In 1910, oxyselenides containing
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phospho ...
were created by treating P2Se5 with
metal hydroxide Metal hydroxides are hydroxides of metals. They are often strong bases. They consist of hydroxide anions and metallic cations. Some metal hydroxides, such as alkali metal hydroxides, ionize completely when dissolved. Certain metal hydroxides ar ...
s. Uranium oxyselenide was formed next by treating H2Se with
uranium dioxide Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear rea ...
s at 1000 °C. This technique was also utilized in synthesizing oxyselenides of rare-earth elements in the mid-1900s.Guittard, M., Flahaut, J., and Domange, L. "The oxyselenide of Yttrium and all the rare earths". Acta Crystallographica 21 (5). Synthesis of oxyselenide compounds currently involves treating oxides with
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has ...
powder and selenium at high temperatures. Recent discoveries in iron oxyarsenides and their
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
have highlighted the importance of mixed anion systems. Mixed copper oxychalcogenides came about when the electronic properties of both chalcogenides and oxides were taken into account. Chemists began pursuing the synthesis of a compound with metallic and
charge density wave A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such ...
properties as well as high temperature superconductivity. Upon synthesizing the copper oxyselenide Na1.9Cu2Se2·Cu2O by reacting Na2Se3.6 with Cu2O, they concluded that a new type of oxychalcogenides could be synthesized by reacting metal oxides with polychalcogenide fluxes.


Derivatives

New oxyselenides of the formula Sr2AO2M2Se2 (A=Co, Mn; M=Cu, Ag) have been synthesized. They crystallize into structures consisting of alternating
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known as ...
-like (metal oxide) and
antifluorite In solid state chemistry, the fluorite structure refers to a common motif for compounds with the formula MX2. The X ions occupy the eight tetrahedral interstitial sites whereas M ions occupy the regular sites of a face-centered cubic (FCC) structure ...
(metal selenide) layers (Figure 2). The optical band gap of each oxyselenide is very narrow, indicating
semiconductivity A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
. Another derivative that reveals oxyselenide properties is β-La2O2MSe2 (M= Fe, Mn). This molecule possesses an
orthorhombic In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a r ...
structure (Figure 3), opening up the possibilities for different packing arrangements of oxyselenides. They are
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
at low temperatures (~27 K) and show high resistivity at room temperature. The Mn analogue, diluted in NaCl solution, suggests an optical band gap of 1.6 eV at room temperature, making it an insulator. Meanwhile, the band gap for the Fe analogue is approximately 0.7 eV between 150 K and 300 K, making it a
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
. In contrast, cobalt oxyselenide La2Co2O3Se2 is antiferromagnetically ordered, suggesting that although the different transition metals are responsible for the changes in an oxyselenide's magnetic property, the molecule's overall lattice structure may also influence its conductivity. The magnetic and conducting properties of different metal compounds coordinated with oxyselenide are not only affected by the transition metal used, but also by the synthesis conditions. For example, the percentage of aluminium used during the synthesis of Ce2O2ZnSe2 as an oxygen retriever affected the band gaps, indicated by the varying product colours. Various structures allow for many potential configurations. For example, as observed before in La2Co2O3Se2, Sr2F2Mn2Se2O exhibits a frustrated magnetic correlation in the structure resulting in an antiferromagnetic lattice. In 2010, p-type polycrystalline BiCuSeO oxyselenides were reported as possible thermoelectric materials. The weak bonds between the u2Se2sup>−2 conducting and i2O2sup>+2 insulating layer, as well as the anharmonic crystal lattice structure, may account for the substance's low thermal conductivity and high thermoelectric performance. Recently, BiCuSeO's ZT value, a dimensionless figure-of-merit indicating thermoelectric performance, has been increased from 0.5 to 1.4. Experiment has shown that Ca doping can improve electrical conductivity, thereby increasing the ZT value. Additionally, replacing 15% of the Bi3+ ions with group 2 metal ions, Ca2+, Sr2+, or Ba2+ (Figure 4), also optimizes the charge carrier concentration.


References

{{selenium compounds Inorganic chemistry Materials science Oxygen compounds Selenium(−II) compounds