Principle of burn cutting
Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the United States) and oxy-fuel cutting are processes that use fuel gases (or liquid fuels such as
gasoline
Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organi ...
or petrol, diesel, bio diesel,
kerosene
Kerosene, paraffin, or lamp oil is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from el, κηρός (''keros'') meaning "wax", and was regi ...
, etc) and
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
to
weld or cut metals. French engineers Edmond Fouché and
Charles Picard became the first to develop oxygen-
acetylene welding in 1903. Pure oxygen, instead of
air
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
, is used to increase the
flame temperature
In the study of combustion, the adiabatic flame temperature is the temperature reached by a flame under ideal conditions. It is an upper bound of the temperature that is reached in actual processes.
There are two types adiabatic flame temperature: ...
to allow localized melting of the workpiece material (e.g. steel) in a room environment. A common
propane/air flame burns at about , a propane/oxygen flame burns at about , an
oxyhydrogen
Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first
gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough ...
flame burns at and an
acetylene/oxygen flame burns at about .
During the early 20th century, before the development and availability of coated
arc welding
Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding powe ...
electrodes in the late 1920s that were capable of making sound welds in steel, oxy-acetylene welding was the only process capable of making welds of exceptionally high quality in virtually all metals in commercial use at the time. These included not only carbon steel but also alloy steels,
cast iron
Cast iron is a class of iron– carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impur ...
,
aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, and
magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
. In recent decades it has been superseded in almost all industrial uses by various
arc welding
Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding powe ...
methods offering greater speed and, in the case of
gas tungsten arc welding
Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atm ...
, the capability of welding very reactive metals such as
titanium
Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
. Oxy-acetylene welding is still used for metal-based artwork and in smaller home-based shops, as well as situations where accessing electricity (e.g., via an extension cord or portable generator) would present difficulties. The oxy-acetylene (and other oxy-fuel gas mixtures) welding torch remains a mainstay heat source for manual
brazing
Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.
Brazing differs from we ...
and
braze welding
Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.
Brazing differs from we ...
, as well as
metal forming
Forming, metal forming, is the metalworking process of fashioning metal parts and objects through mechanical deformation; the workpiece is reshaped without adding or removing material, and its mass remains unchanged. Forming operates on the mater ...
, preparation, and localized heat treating. In addition, oxy-fuel cutting is still widely used, both in
heavy industry
Heavy industry is an industry that involves one or more characteristics such as large and heavy products; large and heavy equipment and facilities (such as heavy equipment, large machine tools, huge buildings and large-scale infrastructure); o ...
and light industrial and repair operations.
In oxy-fuel welding, a welding torch is used to weld metals. Welding metal results when two pieces are heated to a temperature that produces a shared pool of molten metal. The molten pool is generally supplied with additional metal called filler. Filler material selection depends upon the metals to be welded.
In oxy-fuel cutting, a torch is used to heat metal to its
kindling temperature
The autoignition temperature or kindling point of a substance is the lowest temperature in which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to s ...
. A stream of oxygen is then trained on the metal, burning it into a metal oxide that flows out of the
kerf
A saw is a tool consisting of a tough blade, wire, or chain with a hard toothed edge. It is used to cut through material, very often wood, though sometimes metal or stone. The cut is made by placing the toothed edge against the material and mo ...
as
dross
Dross is a mass of solid impurities floating on a molten metal or dispersed in the metal, such as in wrought iron. It forms on the surface of low- melting-point metals such as tin, lead, zinc or aluminium or alloys by oxidation of the metal. For ...
.
[The Oxy-Acetylene Handbook, Union Carbide Corp 1975]
Torches that do not mix fuel with oxygen (combining, instead, atmospheric air) are not considered oxy-fuel torches and can typically be identified by a single tank (oxy-fuel cutting requires two isolated supplies, fuel and oxygen). Most metals cannot be melted with a single-tank torch. Consequently, single-tank torches are typically suitable for
soldering
Soldering (; ) is a process in which two or more items are joined by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involv ...
and
brazing
Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.
Brazing differs from we ...
but not for welding.
Uses
Oxy-fuel torches are or have been used for:
*Heating metal: in automotive and other industries for the purposes of loosening seized fasteners.
*Neutral flame is used for joining and cutting of all ferrous and non-ferrous metals except brass.
*Depositing metal to build up a surface, as in
hardfacing Hardfacing is a metalworking process where harder or tougher material is applied to a base metal. It is welded to the base material, and generally takes the form of specialized electrodes for arc welding or filler rod for oxyacetylene and gas tung ...
.
*Also, oxy-hydrogen flames are used:
**in stone working for "flaming" where the stone is heated and a top layer crackles and breaks. A steel circular brush is attached to an angle grinder and used to remove the first layer leaving behind a bumpy surface similar to hammered bronze.
**in the glass industry for "fire polishing".
**in jewelry production for "water welding" using a water torch (an oxyhydrogen torch whose gas supply is generated immediately by electrolysis of water).
**in automotive repair, removing a seized
bolt.
**formerly, to heat lumps of
quicklime to obtain a bright white light called
limelight, in theatres or optical ("magic") lanterns.
**formerly, in
platinum
Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver".
Pla ...
works, as platinum is fusible only in the oxyhydrogen flame and in an electric furnace.
In short, oxy-fuel equipment is quite versatile, not only because it is preferred for some sorts of iron or steel welding but also because it lends itself to brazing, braze-welding, metal heating (for annealing or tempering, bending or forming), rust, or scale removal, the loosening of corroded nuts and bolts, and is a ubiquitous means of cutting ferrous metals.
Apparatus
The apparatus used in gas welding consists basically of an oxygen source and a fuel gas source (usually contained in
cylinder
A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.
A cylinder may also be defined as an infin ...
s), two
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
regulators and two flexible hoses (one for each cylinder), and a torch. This sort of torch can also be used for
solder
Solder (; NA: ) is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable ...
ing and
brazing
Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.
Brazing differs from we ...
. The cylinders are often carried in a special wheeled
trolley.
There have been examples of
oxyhydrogen
Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first
gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough ...
cutting sets with small (
scuba
Scuba may refer to:
* Scuba diving
** Scuba set, the equipment used for scuba (Self-Contained Underwater Breathing Apparatus) diving
* Scuba, an in-memory database developed by Facebook
* Submillimetre Common-User Bolometer Array, either of two in ...
-sized) gas cylinders worn on the user's back in a backpack harness, for rescue work and similar.
There are also examples of both non-pressurized and pressurized liquid fuel cutting torches, usually using gasoline (petrol). These are used for their increased cutting power over gaseous fuel systems and also greater portability compared to systems requiring two high pressure tanks.
Regulator
The regulator ensures that pressure of the gas from the tanks matches the required pressure in the hose. The flow rate is then adjusted by the operator using
needle valve
A needle valve is a type of valve with a small port and a threaded, needle-shaped plunger. It allows precise regulation of flow, although it is generally only capable of relatively low flow rates.
Construction and operation
An instrument ne ...
s on the torch. Accurate flow control with a needle valve relies on a constant inlet pressure.
Most regulators have two stages. The first stage is a fixed-pressure regulator, which releases gas from the cylinder at a constant intermediate pressure, despite the pressure in the cylinder falling as the gas in it is consumed. This is similar to the
first stage of a scuba-diving regulator. The adjustable second stage of the regulator controls the pressure reduction from the intermediate pressure to the low outlet pressure. The regulator has two pressure gauges, one indicating cylinder pressure, the other indicating hose pressure. The adjustment knob of the regulator is sometimes roughly calibrated for pressure, but an accurate setting requires observation of the gauge.
Some simpler or cheaper oxygen-fuel regulators have only a single-stage regulator, or only a single gauge. A single-stage regulator will tend to allow a reduction in outlet pressure as the cylinder is emptied, requiring manual readjustment. For low-volume users, this is an acceptable simplification. Welding regulators, unlike simpler LPG heating regulators, retain their outlet (hose) pressure gauge and do not rely on the calibration of the adjustment knob. The cheaper single-stage regulators may sometimes omit the cylinder contents gauge, or replace the accurate dial gauge with a cheaper and less precise "rising button" gauge.
Gas hoses
The hoses are designed for use in welding and cutting metal. A double-hose or twinned design can be used, meaning that the oxygen and fuel hoses are joined. If separate hoses are used, they should be clipped together at intervals approximately apart, although that is not recommended for cutting applications, because beads of molten metal given off by the process can become lodged between the hoses where they are held together, and burn through, releasing the pressurised gas inside, which in the case of fuel gas usually ignites.
The hoses are color-coded for visual identification. The color of the hoses varies between countries. In the United States, the oxygen hose is green and the fuel hose is red.
In the UK and other countries, the oxygen hose is blue (black hoses may still be found on old equipment), and the acetylene (fuel) hose is red.
If
liquefied petroleum gas (LPG) fuel, such as
propane, is used, the fuel hose should be orange, indicating that it is compatible with LPG. LPG will damage an incompatible hose, including most acetylene hoses.
The threaded connectors on the hoses are handed to avoid accidental mis-connection: the thread on the oxygen hose is right-handed (as normal), while the fuel gas hose has a left-handed thread.
The left-handed threads also have an identifying groove cut into their nuts.
Gas-tight connections between the flexible hoses and rigid fittings are made by using crimped
hose clips or
ferrule
A ferrule (a corruption of Latin ' "small bracelet", under the influence of ' "iron") is any of a number of types of objects, generally used for fastening, joining, sealing, or reinforcement. They are often narrow circular rings made from me ...
s, often referred to as 'O' clips, over barbed spigots. The use of worm-drive hose clips or
Jubilee Clip
A Jubilee Clip is a genericised brand name for a worm drive hose clamp, a type of band clamp, consisting of a circular metal band or strip combined with a worm gear fixed to one end. It is designed to hold a soft, pliable hose onto a rigid cir ...
s is specifically forbidden in the UK and other countries.
Non-return valve
Acetylene is not just flammable; in certain conditions it is
explosive. Although it has an upper flammability limit in air of 81%,
acetylene's explosive decomposition behaviour makes this irrelevant. If a detonation wave enters the acetylene tank, the tank will be blown apart by the decomposition. Ordinary check valves that normally prevent backflow cannot stop a detonation wave because they are not capable of closing before the wave passes around the gate. For that reason a
flashback arrestor
A flashback arrestor or flash arrestor is a gas safety device most commonly used in oxy-fuel welding and cutting to stop the flame or reverse flow of gas back up into the equipment or supply line. It protects the user and equipment from damage ...
is needed. It is designed to operate before the detonation wave makes it from the hose side to the supply side.
Between the regulator and hose, and ideally between hose and torch on both oxygen and fuel lines, a flashback arrestor and/or non-return valve (check valve) should be installed to prevent flame or oxygen-fuel mixture being pushed back into either cylinder and damaging the equipment or causing a cylinder to explode.
European practice is to fit flashback arrestors at the regulator and check valves at the torch. US practice is to fit both at the regulator.
The flashback arrestor prevents
shock wave
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
s from downstream coming back up the hoses and entering the cylinder, possibly rupturing it, as there are quantities of fuel/oxygen mixtures inside parts of the equipment (specifically within the mixer and blowpipe/nozzle) that may explode if the equipment is incorrectly shut down, and acetylene decomposes at excessive pressures or temperatures. In case the pressure wave has created a leak downstream of the flashback arrestor, it will remain switched off until someone resets it.
Check valve
A check valve lets gas flow in one direction only. It is usually a chamber containing a ball that is pressed against one end by a spring. Gas flow one way pushes the ball out of the way, and a lack of flow or a reverse flow allows the spring to push the ball into the inlet, blocking it. Not to be confused with a flashback arrestor, a check valve is not designed to block a shock wave. The shock wave could occur while the ball is so far from the inlet that the wave will get past the ball before it can reach its off position.
Torch
The torch is the tool that the welder holds and manipulates to make the weld. It has a connection and valve for the fuel gas and a connection and valve for the oxygen, a handle for the welder to grasp, and a mixing chamber (set at an angle) where the fuel gas and oxygen mix, with a tip where the flame forms. Two basic types of torches are positive pressure type and low pressure or injector type.
Welding torch
A welding torch head is used to weld metals. It can be identified by having only one or two pipes running to the nozzle, no oxygen-blast trigger, and two valve knobs at the bottom of the handle letting the operator adjust the oxygen and fuel flow respectively.
Cutting torch
A cutting torch head is used to cut materials. It is similar to a welding torch, but can be identified by the oxygen blast trigger or lever.
When cutting, the metal is first heated by the flame until it is cherry red. Once this temperature is attained, oxygen is supplied to the heated parts by pressing the oxygen-blast trigger. This oxygen reacts with the metal, producing more heat and forming an oxide which is then blasted out of the cut. It is the heat that continues the cutting process. The cutting torch only heats the metal to start the process; further heat is provided by the burning metal.
The melting point of the iron oxide is around half that of the metal being cut. As the metal burns, it immediately turns to liquid iron oxide and flows away from the cutting zone. However, some of the iron oxide remains on the workpiece, forming a hard "slag" which can be removed by gentle tapping and/or grinding.
Rose bud torch
A rose bud torch is used to heat metals for bending, straightening, etc. where a large area needs to be heated. It is so-called because the flame at the end looks like a
rose bud
A rose is either a woody perennial flowering plant of the genus ''Rosa'' (), in the family Rosaceae (), or the flower it bears. There are over three hundred species and tens of thousands of cultivars. They form a group of plants that can be ...
. A welding torch can also be used to heat small areas such as rusted nuts and bolts.
Injector torch
A typical oxy-fuel torch, called an equal-pressure torch, merely mixes the two gases. In an injector torch, high-pressure oxygen comes out of a small nozzle inside the torch head which drags the fuel gas along with it, using the
Venturi effect
The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section (or choke) of a pipe. The Venturi effect is named after its discoverer, the 18th century Italian physicist, Giovanni Battista ...
.
Fuels
Oxy-fuel processes may use a variety of fuel gases (or combustible liquids), the most common being
acetylene. Other gases that may be used are
propylene
Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petro ...
,
liquified petroleum gas
Liquefied petroleum gas (LPG or LP gas) is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, propylene, butylene, isobutane and n-butane.
LPG is used as a fuel gas in heating appliances, cooking ...
(LPG), propane,
natural gas
Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
,
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, and
MAPP gas
MAPP gas was a trademarked name, belonging to The Linde Group, a division of the former global chemical giant Union Carbide, for a fuel gas based on a stabilized mixture of methylacetylene (propyne), propadiene and propane. The name comes from ...
. Liquid fuel cutting systems use such fuels as Gasoline (Petrol) Diesel, Kerosene and possibly some aviation fuels.
Acetylene
Acetylene is the primary fuel for oxy-fuel welding and is the fuel of choice for repair work and general cutting and welding. Acetylene gas is shipped in special cylinders designed to keep the gas dissolved. The cylinders are packed with porous materials (e.g.
kapok fibre,
diatomaceous earth, or (formerly)
asbestos), then filled to around 50% capacity with
acetone
Acetone (2-propanone or dimethyl ketone), is an organic compound with the formula . It is the simplest and smallest ketone (). It is a colorless, highly volatile and flammable liquid with a characteristic pungent odour.
Acetone is miscib ...
, as acetylene is soluble in acetone. This method is necessary because above 207
kPa
KPA may refer to:
* Keele Postgraduate Association, Keele University, UK, formerly Keele Research Association (KRA)
* Kensington (Olympia) station, London, England, National Rail station code
* Kenya Ports Authority
* ''Kiln phosphoric acid'', a ...
(30
lbf/in²) (absolute pressure) acetylene is
unstable
In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
and may
explode
An explosion is a rapid expansion in volume associated with an extreme outward release of energy, usually with the generation of high temperatures and release of high-pressure gases. Supersonic explosions created by high explosives are known ...
.
There is about 1700
kPa
KPA may refer to:
* Keele Postgraduate Association, Keele University, UK, formerly Keele Research Association (KRA)
* Kensington (Olympia) station, London, England, National Rail station code
* Kenya Ports Authority
* ''Kiln phosphoric acid'', a ...
(250 psi) pressure in the tank when full. Acetylene when combined with
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
burns at 3200
°C
The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The ...
to 3500 °C (5800 °F to 6300
°F), highest among commonly used gaseous fuels. As a fuel acetylene's primary disadvantage, in comparison to other fuels, is high cost.
As acetylene is unstable at a pressure roughly equivalent to 33 feet/10 meters underwater, water-submerged cutting and welding is reserved for hydrogen rather than acetylene.
Gasoline
Oxy-
gasoline
Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organi ...
, also known as oxy-petrol, torches perform extremely well, Tests showed that an oxy-gasoline torch can cut steel plate up to thick at the same rate as oxy-acetylene. In plate thicknesses greater than the cutting rate was better than that of oxy-acetylene; at it was three times faster.
[https://www.dndkm.org/DOEKMDocuments/ITSR/DND/Oxy-Gasoline_Torch.pdf ] Additionally the liquid fuel vapour is about 4x the density of a gaseous fuel providing much greater "punch". A high velocity cutting flame is produced by the huge volume expansion while the liquid transitions to a vapour so the cutting flame will easily cut across voids (air space between plates). Cuts through paint, dirt, rust and other contaminating surface materials coating old steel. This system provides almost 100% oxidation during cutting so leaving almost no molten steel in the slag so preventing "sticking" together cut material. Operating cost for a gasoline torch is typically 75-90% less than using propane or Acetylene.
The gasoline is fed either from a non-pressurised tank with the fuel being drawn into the torch by a venturi action created by the pressurised oxygen flow OR fuel is fed from a pressurised tank (whose pressure can be hand-pumped or fed from a gas cylinder).
Another low cost approach commonly used by jewelry makers in Asia is using air bubbled through a gasoline container by a foot-operated air pump, and burning the fuel-air mixture in a specialized welding torch.
Diesel
Diesel is a new option in the liquid fuel cutting torch market. The DAVCO DIESEL BOSS diesel torches claim several advantages over gaseous fuels and gasoline. Firstly, diesel is inherently safer and more powerful than gasoline or gaseous fuel such as Acetylene and Propane. Diesel cutting will cut thicker steel faster and cheaper than acetylene or propane. Additionally the liquid fuel vapour is about 5x the density of a gaseous fuel providing much greater "punch". A high velocity cutting flame is produced by the huge volume expansion while the liquid transitions to a vapour so the cutting flame will easily cut across voids (air space between plates). Cuts through paint, dirt, rust and other contaminating surface materials coating old steel. This system provides almost 100% oxidation during cutting so leaving almost no molten steel in the slag so preventing "sticking" together cut material. Operating cost for a diesel torch is typically 75-90% less than using propane or acetylene. Growing use in the demolition or scrap industries
Hydrogen
Hydrogen has a clean flame and is good for use on
aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
. It can be used at a higher pressure than acetylene and is therefore useful for underwater welding and cutting. It is a good type of flame to use when heating large amounts of material. The flame temperature is high, about 2,000 °C for hydrogen gas in air at atmospheric pressure,
and up to 2800 °C when pre-mixed in a 2:1 ratio with pure oxygen (oxyhydrogen). Hydrogen is not used for welding steels and other ferrous materials, because it causes
hydrogen embrittlement
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed ...
.
For some oxyhydrogen torches the oxygen and hydrogen are produced by
electrolysis of water in an apparatus which is connected directly to the torch. Types of this sort of torch:
* The oxygen and the hydrogen are led off the electrolysis cell separately and are fed into the two gas connections of an ordinary oxy-gas torch. This happens in the water torch, which is sometimes used in small torches used in making
jewelry
Jewellery ( UK) or jewelry ( U.S.) consists of decorative items worn for personal adornment, such as brooches, rings, necklaces, earrings, pendants, bracelets, and cufflinks. Jewellery may be attached to the body or the clothes. From a w ...
and
electronics
The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
.
* The mixed oxygen and hydrogen are drawn from the electrolysis cell and are led into a special torch designed to prevent flashback. See oxyhydrogen.
MPS and MAPP gas
''Methylacetylene-propadiene'' (MAPP) ''gas'' and ''LPG gas'' are similar fuels, because LPG gas is liquefied petroleum gas mixed with MPS. It has the storage and shipping characteristics of LPG and has a heat value a little lower than that of acetylene. Because it can be shipped in small containers for sale at retail stores, it is used by hobbyists and large industrial companies and shipyards because it does not polymerize at high pressures — above 15 psi or so (as acetylene does) and is therefore much less dangerous than acetylene. Further, more of it can be stored in a single place at one time, as the increased compressibility allows for more gas to be put into a tank. MAPP gas can be used at much higher pressures than acetylene, sometimes up to 40 or 50 psi in high-volume oxy-fuel cutting torches which can cut up to steel. Other welding gases that develop comparable temperatures need special procedures for safe shipping and handling. MPS and MAPP are recommended for cutting applications in particular, rather than welding applications.
On 30 April 2008 the Petromont Varennes plant closed its methylacetylene/propadiene crackers. As it was the only North American plant making MAPP gas, many substitutes were introduced by companies that had repackaged the Dow and Varennes product(s) - most of these substitutes are propylene, see below.
Propylene and Fuel Gas
Propylene is used in production welding and cutting. It cuts similarly to propane. When propylene is used, the torch rarely needs tip cleaning. There is often a substantial advantage to cutting with an injector torch (see the
propane section) rather than an equal-pressure torch when using propylene. Quite a few North American suppliers have begun selling propylene under proprietary trademarks such as FG2 and Fuel-Max.
Butane, propane and butane/propane mixes
Butane, like
propane, is a saturated hydrocarbon. Butane and propane do not react with each other and are regularly mixed. Butane boils at 0.6 °C. Propane is more volatile, with a boiling point of -42 °C. Vaporization is rapid at temperatures above the boiling points. The calorific (heat) values of the two are almost equal. Both are thus mixed to attain the vapor pressure that is required by the end user and depending on the ambient conditions. If the ambient temperature is very low, propane is preferred to achieve higher vapor pressure at the given temperature.
Propane does not burn as hot as acetylene in its inner cone, and so it is rarely used for welding. Propane, however, has a very high number of BTUs per cubic foot in its outer cone, and so with the right torch (
injector style) can make a faster and cleaner cut than acetylene, and is much more useful for heating and bending than acetylene.
The maximum neutral flame temperature of propane in oxygen is .
Propane is cheaper than acetylene and easier to transport.
Operating costs
The following is a comparison of operating costs in cutting 1/2"(12mm) plate. Costing is based on an average cost for oxygen and different fuels in May 2012. The
opex with Gasoline was 25% that of propane and 10% that of acetylene. Numbers will vary depending on source of oxygen or fuel and on the type of cutting and the cutting environment or situation.
[davco.biz]
"DAVCO SUPACUT
Oxy-Petrol/Gasoline Cutting Systems"
Retrieved 2022-12-23
The role of oxygen
Oxygen is not the fuel. It is the
oxidizing agent
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
, which chemically combines with the fuel to produce the heat for welding. This is called 'oxidation', but the more specific and more commonly used term in this context is '
combustion
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
'. In the case of hydrogen, the product of combustion is simply water. For the other hydrocarbon fuels, water and carbon dioxide are produced. The heat is released because the molecules of the products of combustion have a lower energy state than the molecules of the fuel and oxygen. In oxy-fuel cutting, oxidation of the metal being cut (typically iron) produces nearly all of the heat required to "burn" through the workpiece.
Oxygen is usually produced elsewhere by
distillation
Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heat ...
of liquefied air and shipped to the welding site in high-pressure vessels (commonly called "tanks" or "cylinders") at a pressure of about 21,000 kPa (3,000 lbf/in² = 200 atmospheres). It is also shipped as a liquid in
Dewar type vessels (like a large
Thermos
A vacuum flask (also known as a Dewar flask, Dewar bottle or thermos) is an insulating storage vessel that greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings. Invented by Sir James Dewa ...
jar) to places that use large amounts of oxygen.
It is also possible to separate oxygen from air by passing the air, under pressure, through a
zeolite
Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
sieve that selectively adsorbs the
nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and lets the oxygen (and
argon
Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
) pass. This gives a purity of oxygen of about 93%. This method works well for brazing, but higher-purity oxygen is necessary to produce a clean, slag-free
kerf
A saw is a tool consisting of a tough blade, wire, or chain with a hard toothed edge. It is used to cut through material, very often wood, though sometimes metal or stone. The cut is made by placing the toothed edge against the material and mo ...
when cutting.
Types of flame
The welder can adjust the oxy-acetylene flame to be carburizing (aka reducing), neutral, or oxidizing. Adjustment is made by adding more or less oxygen to the acetylene flame. The neutral flame is the flame most generally used when welding or cutting. The welder uses the neutral flame as the starting point for all other flame adjustments because it is so easily defined. This flame is attained when welders, as they slowly open the oxygen valve on the torch body, first see only two flame zones. At that point, the acetylene is being completely burned in the welding oxygen and surrounding air.
The flame is chemically neutral. The two parts of this flame are the light blue inner cone and the darker blue to colorless outer cone. The inner cone is where the acetylene and the oxygen combine. The tip of this inner cone is the hottest part of the flame. It is approximately and provides enough heat to easily melt steel.
In the inner cone the acetylene breaks down and partly burns to hydrogen and
carbon monoxide
Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
, which in the outer cone combine with more oxygen from the surrounding air and burn.
An excess of acetylene creates a carbonizing flame. This flame is characterized by three flame zones; the hot inner cone, a white-hot "acetylene feather", and the blue-colored outer cone. This is the type of flame observed when oxygen is first added to the burning acetylene. The feather is adjusted and made ever smaller by adding increasing amounts of oxygen to the flame. A welding feather is measured as 2X or 3X, with X being the length of the inner flame cone. The unburned carbon insulates the flame and drops the temperature to approximately . The reducing flame is typically used for
hard facing operations or backhand pipe welding techniques. The feather is caused by incomplete combustion of the acetylene to cause an excess of carbon in the flame. Some of this carbon is dissolved by the molten metal to carbonize it. The carbonizing flame will tend to remove the oxygen from iron oxides which may be present, a fact which has caused the flame to be known as a "reducing flame".
The oxidizing flame is the third possible flame adjustment. It occurs when the ratio of oxygen to acetylene required for a neutral flame has been changed to give an excess of oxygen. This flame type is observed when welders add more oxygen to the neutral flame. This flame is hotter than the other two flames because the combustible gases will not have to search so far to find the necessary amount of oxygen, nor heat up as much thermally inert carbon.
It is called an oxidizing flame because of its effect on metal. This flame adjustment is generally not preferred. The oxidizing flame creates undesirable oxides to the structural and mechanical detriment of most metals. In an oxidizing flame, the inner cone acquires a purplish tinge and gets pinched and smaller at the tip, and the sound of the flame gets harsh. A slightly oxidizing flame is used in braze-welding and bronze-surfacing while a more strongly oxidizing flame is used in fusion welding certain brasses and bronzes
The size of the flame can be adjusted to a limited extent by the valves on the torch and by the regulator settings, but in the main it depends on the size of the orifice in the tip. In fact, the tip should be chosen first according to the job at hand, and then the regulators set accordingly.
Welding
The flame is applied to the base metal and held until a small puddle of molten metal is formed. The puddle is moved along the path where the weld bead is desired. Usually, more metal is added to the puddle as it is moved along by dipping metal from a welding rod or filler rod into the molten metal puddle. The metal puddle will travel towards where the metal is the hottest. This is accomplished through torch manipulation by the welder.
The amount of heat applied to the metal is a function of the welding tip size, the speed of travel, and the welding position. The flame size is determined by the welding tip size. The proper tip size is determined by the metal thickness and the joint design.
Welding gas pressures using oxy-acetylene are set in accordance with the manufacturer's recommendations. The welder will modify the speed of welding travel to maintain a uniform bead width. Uniformity is a quality attribute indicating good workmanship. Trained welders are taught to keep the bead the same size at the beginning of the weld as at the end. If the bead gets too wide, the welder increases the speed of welding travel. If the bead gets too narrow or if the weld puddle is lost, the welder slows down the speed of travel. Welding in the vertical or overhead positions is typically slower than welding in the flat or horizontal positions.
The welder must add the filler rod to the molten puddle. The welder must also keep the filler metal in the hot outer flame zone when not adding it to the puddle to protect filler metal from oxidation. Do not let the welding flame burn off the filler metal. The metal will not wet into the base metal and will look like a series of cold dots on the base metal. There is very little strength in a cold weld. When the filler metal is properly added to the molten puddle, the resulting weld will be stronger than the original base metal.
Welding
lead
Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
or '
lead burning
Lead burning is a welding process used to join lead sheet. It is a manual process carried out by gas welding, usually oxy-acetylene. Uses
Lead burning is carried out for roofing work in sheet lead, or for the formation of custom-made rainwater ...
' was much more common in the 19th century to make some pipe connections and tanks. Great skill is required but can be quickly learned. In building construction today some lead
flashing is welded but soldered copper flashing is much more common in America. In the automotive body collision industry before the 1980s, oxyacetylene gas torch welding was seldom used to weld sheetmetal, since warpage was a byproduct besides the excess heat. Automotive body repair methods at the time were crude and yielded improprieties until
MIG welding
Russian Aircraft Corporation "MiG" (russian: Российская самолётостроительная корпорация „МиГ“, Rossiyskaya samolyotostroitel'naya korporatsiya "MiG"), commonly known as Mikoyan and MiG, was a Russi ...
became the industry standard. Since the 1970s, when high strength steel became the standard for automotive manufacturing, electric welding became the preferred method. After the 1980s, the oxyacetylene torch fell out of use for sheetmetal welding in the industrialized world.
Cutting
For cutting, the setup is a little different. A cutting torch has a 60- or 90-degree angled head with orifices placed around a central jet. The outer jets are for preheat flames of oxygen and acetylene. The central jet carries only oxygen for cutting. The use of several preheating flames rather than a single flame makes it possible to change the direction of the cut as desired without changing the position of the nozzle or the angle which the torch makes with the direction of the cut, as well as giving a better preheat balance.
Manufacturers have developed custom tips for Mapp, propane, and propylene gases to optimize the flames from these alternate fuel gases.
The flame is not intended to melt the metal, but to bring it to its
ignition temperature.
The torch's trigger blows extra oxygen at higher pressures down the torch's third tube out of the central jet into the workpiece, causing the metal to burn and blowing the resulting molten oxide through to the other side. The ideal kerf is a narrow gap with a sharp edge on either side of the workpiece; overheating the workpiece and thus melting through it causes a rounded edge.
Cutting is initiated by heating the edge or leading face (as in cutting shapes such as round rod) of the steel to the ignition temperature (approximately bright cherry red heat) using the pre-heat jets only, then using the separate cutting oxygen valve to release the oxygen from the central jet.
The oxygen chemically combines with the iron in the ferrous material to oxidize the iron quickly into molten
iron oxide, producing the cut. Initiating a cut in the middle of a workpiece is known as piercing.
It is worth noting several things at this point:
*The oxygen flow rate is critical; too little will make a slow ragged cut, while too much will waste oxygen and produce a wide concave cut. Oxygen lances and other custom made torches do not have a separate pressure control for the cutting oxygen, so the cutting oxygen pressure must be controlled using the oxygen regulator. The oxygen cutting pressure should match the cutting tip oxygen orifice. The tip manufacturer's equipment data should be reviewed for the proper cutting oxygen pressures for the specific cutting tip.
*The oxidation of iron by this method is highly exothermic. Once it has started, steel can be cut at a surprising rate, far faster than if it were merely melted through. At this point, the pre-heat jets are there purely for assistance. The rise in temperature will be obvious by the intense glare from the ejected material, even through proper goggles. A
thermic lance is a tool that also uses rapid oxidation of iron to cut through almost any material.
*Since the melted metal flows out of the workpiece, there must be room on the opposite side of the workpiece for the spray to exit. When possible, pieces of metal are cut on a grate that lets the melted metal fall freely to the ground. The same equipment can be used for oxyacetylene blowtorches and welding torches, by exchanging the part of the torch in front of the torch valves.
For a basic oxy-acetylene rig, the cutting speed in light steel section will usually be nearly twice as fast as a
petrol
Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic c ...
-driven cut-off grinder. The advantages when cutting large sections are obvious: an oxy-fuel torch is light, small and quiet and needs very little effort to use, whereas a
cut-off grinder is heavy and noisy and needs considerable operator exertion and may vibrate severely, leading to stiff hands and possible long-term
vibration white finger
Vibration white finger (VWF), also known as hand-arm vibration syndrome (HAVS) or dead finger, is a secondary form of Raynaud's syndrome, an industrial injury triggered by continuous use of vibrating hand-held machinery. Use of the term ''vibration ...
. Oxy-acetylene torches can easily cut through ferrous materials in excess of 200 mm (8 inches). Oxygen lances are used in scrapping operations and cut sections thicker than 200 mm (8 inches). Cut-off grinders are useless for these kinds of application.
Robotic oxy-fuel cutters sometimes use a high-speed divergent nozzle. This uses an oxygen jet that opens slightly along its passage. This allows the compressed oxygen to expand as it leaves, forming a high-velocity jet that spreads less than a parallel-bore nozzle, allowing a cleaner cut. These are not used for cutting by hand since they need very accurate positioning above the work. Their ability to produce almost any shape from large steel plates gives them a secure future in
shipbuilding
Shipbuilding is the construction of ships and other floating vessels. It normally takes place in a specialized facility known as a shipyard. Shipbuilders, also called shipwrights, follow a specialized occupation that traces its roots to befo ...
and in many other industries.
Oxy-propane torches are usually used for cutting up scrap to save money, as
LPG is far cheaper
joule
The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applie ...
for joule than acetylene, although propane does not produce acetylene's very neat cut profile. Propane also finds a place in production, for cutting very large sections.
Oxy-acetylene can cut only low- to medium-
carbon steels and
wrought iron
Wrought iron is an iron alloy with a very low carbon content (less than 0.08%) in contrast to that of cast iron (2.1% to 4%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" ...
. High-carbon steels are difficult to cut because the melting point of the slag is closer to the melting point of the parent metal, so that the slag from the cutting action does not eject as sparks but rather mixes with the clean melt near the cut. This keeps the oxygen from reaching the clean metal and burning it. In the case of
cast iron
Cast iron is a class of iron– carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impur ...
, graphite between the grains and the shape of the grains themselves interfere with the cutting action of the torch. Stainless steels cannot be cut either because the material does not burn readily.
Safety
Oxyacetylene welding/cutting is not difficult, but there are a good number of subtle safety points that should be learned such as:
*More than 1/7 the capacity of the cylinder should not be used per hour. This causes the acetone inside the acetylene cylinder to come out of the cylinder and contaminate the hose and possibly the torch.
*Acetylene is dangerous above 1
atm (15 psi) pressure. It is unstable and explosively decomposes.
* Proper ventilation when welding will help to avoid large chemical exposure.
The importance of eye protection
Proper protection such as
welding goggles should be worn at all times, including to protect the eyes against glare and flying sparks. Special safety eyewear must be used—both to protect the welder and to provide a clear view through the yellow-orange flare given off by the incandescing flux. In the 1940s cobalt melters’ glasses were borrowed from steel foundries and were still available until the 1980s. However, the lack of protection from impact, ultra-violet, infrared and blue light caused severe eyestrain and eye damage.
Didymium
Didymium ( el, , twin) is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing, especially with a gas ( propane)-powered forge, where it provides a filter that selectively block ...
eyewear, developed for glassblowers in the 1960s, was also borrowed—until many complained of eye problems from excessive infrared, blue light, and insufficient shading. Today very good eye protection can be found designed especially for gas-welding aluminum that cuts the sodium orange flare completely and provides the necessary protection from ultraviolet, infrared, blue light and impact, according to ANSI Z87-1989 safety standards for a Special Purpose Lens.
Safety with cylinders
Fuel and oxygen tanks should be fastened securely and upright to a wall, post, or portable cart. An oxygen tank is especially dangerous because the gas is stored at a pressure of 21 MPa (3000 lbf/in² = 200
atmospheres) when full. If the tank falls over and damages the valve, the tank can be jettisoned by the compressed oxygen escaping the cylinder at high speed. Tanks in this state are capable of breaking through a brick wall.
For this reason, never move an oxygen tank around without its valve cap screwed in place.
On an oxyacetylene torch system there are three types of
valve
A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically fitting ...
s: the tank valve, the regulator valve, and the torch valve. Each gas in the system will have each of these three valves. The regulator converts the high pressure gas inside of the tanks to a low pressure stream suitable for welding. Acetylene cylinders must be maintained in an upright position to prevent the internal acetone and acetylene from separating in the filler material.
Chemical exposure
A less obvious hazard of welding is exposure to harmful chemicals. Exposure to certain metals, metal oxides, or carbon monoxide can often lead to severe medical conditions. Damaging chemicals can be produced from the fuel, from the work-piece, or from a protective coating on the work-piece. By increasing ventilation around the welding environment, the welders will have much less exposure to harmful chemicals from any source.
The most common fuel used in welding is acetylene, which has a two-stage reaction. The primary chemical reaction involves the acetylene disassociating in the presence of oxygen to produce heat, carbon monoxide, and hydrogen gas: C
2H
2 + O
2 → 2CO + H
2. A secondary reaction follows where the carbon monoxide and hydrogen combine with more oxygen to produce
carbon dioxide
Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and water vapor. When the secondary reaction does not burn all of the reactants from the primary reaction, the welding process can produce large amounts of carbon monoxide, and it often does. Carbon monoxide is also the byproduct of many other incomplete fuel reactions.
Almost every piece of metal is an alloy of one type or another.
Copper
Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, aluminum, and other base metals are occasionally alloyed with
beryllium
Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
, which is a highly
toxic
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
metal. When a metal like this is welded or cut, high concentrations of toxic beryllium fumes are released. Long-term exposure to beryllium may result in shortness of breath, chronic cough, and significant weight loss, accompanied by fatigue and general weakness. Other alloying elements such as
arsenic
Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, ...
,
manganese
Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
,
silver
Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, and aluminum can cause sickness to those who are exposed.
More common are the anti-rust coatings on many manufactured metal components.
Zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
,
cadmium
Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
, and
fluorides are often used to protect
iron
Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
s and
steels from
oxidizing
Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
.
Galvanized
Galvanization or galvanizing ( also spelled galvanisation or galvanising) is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are submerged ...
metals have a very heavy zinc coating. Exposure to
zinc oxide
Zinc oxide is an inorganic compound with the formula . It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement ...
fumes can lead to a sickness named "
metal fume fever
Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, galvo poisoning, metal dust fever, welding shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (Zn ...
". This condition rarely lasts longer than 24 hours, but severe cases can be fatal. Not unlike common
influenza, fevers, chills, nausea, cough, and fatigue are common effects of high zinc oxide exposure.
Flashback
''Flashback'' is the condition of the flame propagating down the hoses of an oxy-fuel welding and cutting system. To prevent such a situation a
flashback arrestor
A flashback arrestor or flash arrestor is a gas safety device most commonly used in oxy-fuel welding and cutting to stop the flame or reverse flow of gas back up into the equipment or supply line. It protects the user and equipment from damage ...
is usually employed.
The flame burns backwards into the hose, causing a popping or squealing noise. It can cause an explosion in the hose with the potential to injure or kill the operator. Using a lower pressure than recommended can cause a flashback.
See also
*
Air-arc cutting
*
Flame cleaning Flame cleaning, also known as flame gouging, is the process of cleaning a structural steel surface by passing an intensely hot oxyacetylene flame over it. Mill scale and rust are removed by the reducing effect of the flame and the action of the heat ...
;
*
Oxyhydrogen flame
*
Plasma arc cutting
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other ...
*
TIG
*
Thermal lance
A thermal lance, thermic lance, oxygen lance, or burning bar is a tool that heats and melts steel in the presence of pressurized oxygen to create very high temperatures for cutting. It consists of a long steel tube packed with alloy steel rods, w ...
*
Underwater welding
Hyperbaric welding is the process of welding at elevated pressures, normally underwater. Hyperbaric welding can either take place ''wet'' in the water itself or ''dry'' inside a specially constructed positive pressure enclosure and hence a dr ...
References
Notes
Bibliography
*
*
Further reading
*
*
External links
"Welding and Cutting with Oxyacetylene" ''Popular Mechanics'', December 1935pp. 948–953
Using Oxy-Fuel Welding on Aircraft Aluminum SheetMore on oxyacetylenewelding history at Welding.comAn e-book about oxy-gas cutting and weldingOxy-fuel torch at Everything2.comTorch Brazing InformationVideo of how to weld lead sheetWorking with lead sheet
{{Authority control
Burners
Hydrogen technologies
Metalworking cutting tools
Oxygen
Acetylene
Propane
Butane
Welding
Industrial gases