HOME

TheInfoList



OR:

Oxidative addition and
reductive elimination Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is ...
are two important and related classes of reactions in
organometallic chemistry Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
. Oxidative addition is a process that increases both the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
and
coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central io ...
of a metal centre. Oxidative addition is often a step in
catalytic cycle In chemistry, a catalytic cycle is a multistep reaction mechanism that involves a catalyst. The catalytic cycle is the main method for describing the role of catalysts in biochemistry, organometallic chemistry, bioinorganic chemistry, materials s ...
s, in conjunction with its reverse reaction, reductive elimination.


Role in transition metal chemistry

For transition metals, oxidative reaction results in the decrease in the d''n'' to a configuration with fewer electrons, often 2e fewer. Oxidative addition is favored for metals that are (i) basic and/or (ii) easily oxidized. Metals with a relatively low
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
often satisfy one of these requirements, but even high oxidation state metals undergo oxidative addition, as illustrated by the oxidation of Pt(II) with chlorine: : tCl4sup>2− + Cl2tCl6sup>2− In classical
organometallic chemistry Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
, the formal oxidation state of the metal and the electron count of the complex both increase by two. One-electron changes are also possible and in fact some oxidative addition reactions proceed via series of 1e changes. Although oxidative additions can occur with the insertion of a metal into many different substrates, oxidative additions are most commonly seen with H–H, H–X, and C–X bonds because these substrates are most relevant to commercial applications. Oxidative addition requires that the metal complex have a vacant coordination site. For this reason, oxidative additions are common for four- and five-coordinate complexes. Reductive elimination is the reverse of oxidative addition. Reductive elimination is favored when the newly formed X–Y bond is strong. For reductive elimination to occur the two groups (X and Y) should be mutually adjacent on the metal's
coordination sphere In coordination chemistry, the first coordination sphere refers to the array of molecules and ions (the ligands) directly attached to the central metal atom. The second coordination sphere consists of molecules and ions that attached in various ...
. Reductive elimination is the key product-releasing step of several reactions that form C–H and C–C bonds.


Mechanisms of oxidative addition

Oxidative additions proceed via many pathways that depend on the metal center and the substrates.


Concerted pathway

Oxidative additions of nonpolar substrates such as hydrogen and hydrocarbons appear to proceed via concerted pathways. Such substrates lack π-bonds, consequently a three-centered σ complex is invoked, followed by intramolecular ligand bond cleavage of the ligand (probably by donation of electron pair into the sigma* orbital of the inter ligand bond) to form the oxidized complex. The resulting ligands will be mutually ''cis'', although subsequent isomerization may occur. : This mechanism applies to the addition of
homonuclear diatomic molecules Homonuclear molecules, or homonuclear species, are molecules composed of only one element. Homonuclear molecules may consist of various numbers of atoms. The size of the molecule an element can form depends on the element's properties, and some el ...
such as H2. Many C–H activation reactions also follow a concerted mechanism through the formation of an M–(C–H)
agostic complex In organometallic chemistry, agostic interaction refers to the interaction of a coordinatively-unsaturated transition metal with a C−H bond, when the two electrons involved in the C−H bond enter the empty d-orbital of the transition metal, r ...
. A representative example is the reaction of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
with
Vaska's complex Vaska's complex is the trivial name for the chemical compound ''trans''-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO) (C6H5)3sub>2. This square planar diamagnetic organometallic complex consists of a central iridi ...
, ''trans''-IrCl(CO) (C6H5)3sub>2. In this transformation, iridium changes its formal
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
from +1 to +3. The product is formally bound to three anions: one
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride salts ...
and two
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
ligands. As shown below, the initial metal complex has 16 valence electrons and a coordination number of four whereas the product is a six-coordinate 18 electron complex. : Formation of a
trigonal bipyramidal In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. This is one geometry for which the bond angles surrounding the central atom are not ident ...
dihydrogen intermediate is followed by cleavage of the H–H bond, due to electron back donation into the H–H σ*-orbital, i.e. a sigma complex. This system is also in
chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the Reagent, reactants and Product (chemistry), products are present in concentrations which have no further tendency to change with time, so that there is no observable chan ...
, with the reverse reaction proceeding by the elimination of hydrogen gas with simultaneous reduction of the metal center. The electron back donation into the H–H σ*-orbital to cleave the H–H bond causes electron-rich metals to favor this reaction. The concerted mechanism produces a ''cis'' dihydride, while the stereochemistry of the other oxidative addition pathways do not usually produce ''cis'' adducts.


SN2-type

Some oxidative additions proceed analogously to the well known bimolecular nucleophilic substitution reactions in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J.; ...
. Nucleophilic attack by the metal center at the less electronegative atom in the substrate leads to cleavage of the R–X bond, to form an –Rsup>+ species. This step is followed by rapid coordination of the anion to the cationic metal center. For example, reaction of a square planar complex with methyl iodide: : This mechanism is often assumed in the addition of polar and electrophilic substrates, such as
alkyl halides The haloalkanes (also known as halogenoalkanes or alkyl halides) are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely us ...
and
halogens The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group i ...
.


Ionic

The ionic mechanism of oxidative addition is similar to the SN2 type in that it involves the stepwise addition of two distinct ligand fragments. The key difference being that ionic mechanisms involve substrates which are dissociated in solution prior to any interactions with the metal center. An example of ionic oxidative addition is the addition of hydrochloric acid.


Radical

In addition to undergoing SN2-type reactions, alkyl halides and similar substrates can add to a metal center via a radical mechanism, although some details remain controversial. Reactions which are generally accepted to proceed by a radical mechanism are known however. One example was proposed by Lednor and co-workers. ;Initiation : CH3)2C(CN)Nsub>2 → 2 (CH3)2(CN)C + N2 :(CH3)2(CN)C + PhBr → (CH3)2(CN)CBr + Ph ;Propagation :Ph + t(PPh3)2t(PPh3)2Phsup>• : t(PPh3)2Phsup>• + PhBr → t(PPh3)2PhBr+ Ph


Applications

Oxidative addition and reductive elimination are invoked in many catalytic processes both in
homogeneous catalysis In chemistry, homogeneous catalysis is catalysis by a soluble catalyst in a solution. Homogeneous catalysis refers to reactions where the catalyst is in the same phase as the reactants, principally in solution. In contrast, heterogeneous catalysi ...
(i.e., in solution) such as the
Monsanto process The Monsanto process is an industrial method for the manufacture of acetic acid by catalytic carbonylation of methanol. The Monsanto process has largely been supplanted by the Cativa process, a similar iridium-based process developed by BP Chemic ...
and
alkene In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, an ...
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organ ...
using
Wilkinson's catalyst Wilkinson's catalyst is the common name for chloridotris(triphenylphosphine)rhodium(I), a coordination complex of rhodium with the formula hCl(PPh3)3(Ph = phenyl). It is a red-brown colored solid that is soluble in hydrocarbon solvents such as ...
. It is often suggested that oxidative addition-like reactions are also involved in mechanisms of
heterogeneous catalysis In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. ...
, e.g. hydrogenation catalyzed by platinum metal. Metals are however characterised by
band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or ' ...
s, so
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s are not meaningful. Oxidative addition is also needed in order for nucleophilic addition of an alkyl group to occur. Oxidative insertion is also a crucial step in many cross-coupling reactions like the Suzuki coupling,
Negishi coupling The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) specie ...
, and the
Sonogashira coupling The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or v ...
.


References


Further reading

*


External links

* * {{Organometallics Chemical reactions Coordination chemistry Organometallic chemistry Reaction mechanisms Redox