HOME

TheInfoList



OR:

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, defocus is the aberration in which an image is simply out of
focus Focus, or its plural form foci may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film *''Focus'', a 1962 TV film starring James Whitmore * ''Focus'' (2001 film), a 2001 film based ...
. This aberration is familiar to anyone who has used a camera, videocamera, microscope, telescope, or binoculars. Optically, defocus refers to a
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
of the focus along the
optical axis An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens, microscope or telescopic sight. The optical axis is an imaginary line that defines the path along which light propaga ...
away from the detection surface. In general, defocus reduces the sharpness and contrast of the image. What should be sharp, high-contrast edges in a scene become gradual transitions. Fine detail in the scene is blurred or even becomes invisible. Nearly all image-forming optical devices incorporate some form of focus adjustment to minimize defocus and maximize image quality.


In optics and photography

The degree of image blurring for a given amount of focus shift depends inversely on the lens
f-number In optics, the f-number of an optical system such as a camera lens is the ratio of the system's focal length to the diameter of the entrance pupil ("clear aperture").Smith, Warren ''Modern Optical Engineering'', 4th Ed., 2007 McGraw-Hill Pro ...
. Low f-numbers, such as to 2.8, are very sensitive to defocus and have very shallow depths of focus. High f-numbers, in the 16 to 32 range, are highly tolerant of defocus, and consequently have large depths of focus. The limiting case in f-number is the
pinhole camera A pinhole camera is a simple camera without a lens but with a tiny aperture (the so-called '' pinhole'')—effectively a light-proof box with a small hole in one side. Light from a scene passes through the aperture and projects an inverted image ...
, operating at perhaps 100 to 1000, in which case all objects are in focus almost regardless of their distance from the pinhole
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An ...
. The penalty for achieving this extreme depth of focus is very dim illumination at the imaging film or sensor, limited resolution due to diffraction, and very long
exposure time In photography, shutter speed or exposure time is the length of time that the film or digital sensor inside the camera is exposed to light (that is, when the camera's shutter is open) when taking a photograph. The amount of light that re ...
, which introduces the potential for image degradation due to
motion blur Motion blur is the apparent streaking of moving objects in a photograph or a sequence of frames, such as a film or animation. It results when the image being recorded changes during the recording of a single exposure, due to rapid movement or lo ...
. The amount of allowable defocus is related to the
resolution Resolution(s) may refer to: Common meanings * Resolution (debate), the statement which is debated in policy debate * Resolution (law), a written motion adopted by a deliberative body * New Year's resolution, a commitment that an individual mak ...
of the imaging medium. A lower-resolution imaging chip or film is more tolerant of defocus and other aberrations. To take full advantage of a higher resolution medium, defocus and other aberrations must be minimized. Defocus is modeled in
Zernike polynomial In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after optical physicist Frits Zernike, winner of the 1953 Nobel Prize in Physics and the inventor of phase-contrast microscopy, th ...
format as a(2 \rho^2-1), where a is the defocus coefficient in
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
s of light. This corresponds to the
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
-shaped
optical path difference In optics, optical path length (OPL, denoted ''Λ'' in equations), also known as optical length or optical distance, is the product of the geometric length of the optical path followed by light and the refractive index of homogeneous medium throu ...
between two spherical
wavefront In physics, the wavefront of a time-varying '' wave field'' is the set ( locus) of all points having the same '' phase''. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal fr ...
s that are
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
at their vertices and have different radii of curvature. For some applications, such as
phase contrast Phase-contrast imaging is a method of imaging that has a range of different applications. It exploits differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, ph ...
electron microscopy, defocused images can contain useful information. Multiple images recorded with various values of defocus can be used to examine how the intensity of the electron wave varies in three-dimensional space, and from this information the phase of the wave can be inferred. This is the basis of non-interferometric
phase retrieval Phase retrieval is the process of algorithmically finding solutions to the phase problem. Given a complex signal F(k), of amplitude , F (k), , and phase \psi(k): ::F(k) = , F(k), e^ =\int_^ f(x)\ e^\,dx where ''x'' is an ''M''-dimensional spatia ...
. Examples of phase retrieval algorithms that use defocused images include the
Gerchberg–Saxton algorithm The Gerchberg–Saxton (GS) algorithm is an iterative phase retrieval algorithm for retrieving the phase of a complex-valued wavefront from two intensity measurements acquired in two different planes. Typically, the two planes are the image plane ...
and various methods based on the
transport-of-intensity equation The transport-of-intensity equation (TIE) is a computational approach to reconstruct the phase of a complex wave in optical and electron microscopy. It describes the internal relationship between the intensity and phase distribution of a wave. ...
.


In vision

In casual conversation, the term ''blur'' can be used to describe any reduction in vision. However, in a clinical setting blurry vision means the subjective experience or perception of optical defocus within the eye, called
refractive error Refractive error, also known as refraction error, is a problem with focusing light accurately on the retina due to the shape of the eye and or cornea. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism ...
. Blur may appear differently depending on the amount and type of refractive error. The following are some examples of blurred images that may result from refractive errors: Image:Specrx-letterscamblur.png Image:Specrx-lettersastigblur.png Image:Specrx-lettersastigblur2.png Image:Specrx-letterseyeblur.png The extent of blurry vision can be assessed by measuring
visual acuity Visual acuity (VA) commonly refers to the clarity of vision, but technically rates an examinee's ability to recognize small details with precision. Visual acuity is dependent on optical and neural factors, i.e. (1) the sharpness of the retinal ...
with an
eye chart __NOTOC__ An eye chart, or optotype, is a chart used to subjectively measure visual acuity. Eye charts are often used by health care professionals, such as optometrists, physicians or nurses, to screen persons for vision impairment. Ophthalmologi ...
. Blurry vision is often corrected by focusing light on the retina with
corrective lenses A corrective lens is a lens (i.e. a transmissive optical device) that is typically worn in front of the eye to improve daily vision. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glas ...
. These corrections sometimes have unwanted effects including magnification or reduction, distortion, color fringes, and altered depth perception. During an eye exam, the patient's acuity is measured without correction, with their current correction, and after
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
. This allows the optometrist or ophthalmologist ("eye doctor") to determine the extent refractive errors play in limiting the quality of the patient's vision. A Snellen acuity of 6/6 or 20/20, or as decimal value 1.0, is considered to be sharp vision for an average human (young adults may have nearly twice that value). Best-corrected acuity lower than that is an indication that there is another limitation to vision beyond the correction of refractive error.


The blur disk

Optical defocus can result from incorrect corrective lenses or insufficient accommodation, as, e.g., in
presbyopia Presbyopia is physiological insufficiency of accommodation associated with the aging of the eye that results in progressively worsening ability to focus clearly on close objects. Also known as age-related farsightedness (or age-related long si ...
from the aging eye. As said above, light rays from a point source are then not focused to a single point on the retina but are distributed in a little disk of light, called the ''blur disk''. Its size depends on pupil size and amount of defocus, and is calculated by the equation d=0.057 p D (''d'' = diameter in degrees visual angle, ''p'' = pupil size in mm, ''D'' = defocus in diopters). In linear systems theory, the point image (i.e. the blur disk) is referred to as the point spread function (PSF). The retinal image is given by the
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
of the in-focus image with the PSF.


See also

*
Bokeh In photography, bokeh ( or ; ) is the aesthetic quality of the blur produced in out-of-focus parts of an image. Bokeh has also been defined as "the way the lens renders out-of-focus points of light". Differences in lens aberrations and ...
* Shape from defocus


References

*Smith, Warren J., ''Modern Optical Engineering'', McGraw–Hill, 2000, Chapter 11, Optics Geometrical optics {{optics-stub