HOME

TheInfoList



OR:

Organic photorefractive materials are materials that exhibit a temporary change in
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
when exposed to light. The changing refractive index causes light to change speed throughout the material and produce light and dark regions in the crystal. The buildup can be controlled to produce holographic images for use in biomedical scans and optical computing. The ease with which the chemical composition can be changed in organic materials makes the photorefractive effect more controllable.


History

Although the physics behind the
photorefractive effect The photorefractive effect is a nonlinear optical effect seen in certain crystals and other materials that respond to light by altering their refractive index. The effect can be used to store temporary, erasable holograms and is useful for hologr ...
were known for quite a while, the effect was first observed in 1967 in LiNbO3. For more than thirty years, the effect was observed and studied exclusively in inorganic materials, until 1990, when a nonlinear organic
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
2-(cyclooctylamino)-5-nitropyridine (COANP) doped with 7,7,8,8-tetracyanoquinodimethane (
TCNQ Tetracyanoquinodimethane (TCNQ) is the organic compound with the formula . This cyanocarbon, a relative of para-quinone, is an electron acceptor that is used to prepare charge transfer salts, which are of interest in molecular electronics. Pr ...
) exhibited the photorefractive effect. Even though inorganic material-based electronics dominate the current market, organic PR materials have been improved greatly since then and are currently considered to be an equal alternative to inorganic crystals.


Theory

There are two phenomena that, when combined together, produce the photorefractive effect. These are
photoconductivity Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation. Wh ...
, first observed in selenium by
Willoughby Smith Willoughby Smith (6 April 1828, in Great Yarmouth, Norfolk – 17 July 1891, in Eastbourne, Sussex) was an English electrical engineer who discovered the photoconductivity of the element selenium. This discovery led to the invention of photoelec ...
in 1873, and the
Pockels Effect The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known as ...
, named after
Friedrich Carl Alwin Pockels Friedrich Carl Alwin Pockels (18 June 1865 – 29 August 1913) was a German physicist. He was born in Italy to Captain Theodore Pockels and Alwine Becker. He obtained a doctorate from the University of Göttingen in 1888, and from 1900 to 1913 h ...
who studied it in 1893. Photoconductivity is the property of a material that describes the capability of incident light of adequate wavelength to produce electric charge carriers. The
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
of an
intrinsic semiconductor An intrinsic (pure) semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the ...
is exactly in the middle of the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
. The densities of free electrons ''n'' in the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
and free holes ''h'' in the
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
can be found through equations: n=N_e^ and h=N_e^ where NC and NV are the densities of states at the bottom of the conduction band and the top of the valence band, respectively, EC and EV are the corresponding energies, EF is the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
, kB is
Boltzmann's constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
and T is the absolute temperature. Addition of impurities into the semiconductor, or doping, produces excess
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
or electrons, which, with sufficient density, may pin the Fermi level to the impurities' position. A sufficiently energetic light can excite
charge carriers In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
so much that they will populate the initially empty localized levels. Then, the density of free carriers in the conduction and/or the valence band will increase. To account for these changes, steady-state Fermi levels are defined for electrons to be EFn and, for holes – EFp. The densities n and h are, then equal to n=N_e^ h=N_e^ The localized states between EFn and EFp are known as 'photoactive centers'. The charge carriers remain in these states for a long time until they recombine with an oppositely charged carrier. The states outside the EFn – EFp energy, however, relax their charge carriers to the nearest extended states. The effect of incident light on the conductivity of the material depends on the energy of light and material. Differently-doped materials may have several different types of photoactive centers, each of which requires a different mathematical treatment. However, it is not very difficult to show the relationship between incident light and conductivity in a material with only one type of charge carrier and one type of a photoactive center. The dark conductivity of such a material is given by \sigma _=e\left ( N_-N_^ \right )\beta \mu \tau where σd is the
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution **Ionic conductivity (solid state), elec ...
, e = electron charge, ND and N are the densities of total photoactive centers and ionized empty electron acceptor states, respectively, β is the thermal photoelectron generation coefficient, μ is the mobility constant and τ is the photoelectron lifetime. The equation for photoconductivity substitutes the parameters of the incident light for β and is \sigma _=e\left ( N_-N_^ \right )\frac in which s is the effective cross-section for photoelectron generation, h is the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
, ν is the frequency of incident light, and the term I = I0e−αz in which I0 is the incident irradiance, z is the coordinate along the crystal thickness and α is the light intensity loss coefficient. The
electro-optic effect Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propaga ...
is a change of the optical properties of a given material in response to an electric field. There are many different occurrences, all of which are in the subgroup of the electro-optic effect, and Pockels effect is one of these occurrences. Essentially, the Pockels effect is the change of the material's refractive index induced by an applied electric field. The
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
of a material is the factor by which the
phase velocity The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, ...
is decreased relative to the velocity of light in vacuum. At a microscale, such a decrease occurs because of a disturbance in the charges of each atom after being subjected to the electromagnetic field of the incident light. As the electrons move around energy levels, some energy is released as an electromagnetic wave at the same frequency but with a phase delay. The apparent light in a medium is a superposition of all of the waves released in such way, and so the resulting light wave has shorter wavelength but the same frequency and the light wave's phase speed is slowed down. Whether or not the material will exhibit Pockels effect depends on its symmetry. Both
centrosymmetric In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups ...
and non-centrosymmetric media will exhibit an effect similar to Pockels, the
Kerr effect The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chang ...
. The refractive index change will be proportional to the square of the electric field strength and will therefore be much weaker than the Pockels effect. It is only the non-centrosymmetric materials that can exhibit the Pockels effect: for instance, lithium tantalite (trigonal crystal) or
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
( zinc-blende crystal); as well as poled polymers with specifically designed organic molecules. It is possible to describe the Pockels effect mathematically by first introducing the index ellipsoid – a concept relating the orientation and relative magnitude of the material's refractive indices. The ellipsoid is defined by \frac+\frac+\frac=1 in which ''ε''''i'' is the relative permittivity along the ''x'', ''y'', or ''z'' axis, and ''R'' is the reduced displacement vector defined as ''D''''i''/ in which ''D''''i'' is the electric displacement vector and ''W'' is the field energy. The electric field will induce a deformation in ''R''''i'' as according to: \Delta R_^=\sum_^r_E_ in which E is the applied electric field, and rij is a coefficient that depends on the
crystal symmetry In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns th ...
and the orientation of the coordinate system with respect to the crystal axes. Some of these coefficients will usually be equal to zero.


Organic Photorefractive Materials

In general, photorefractive materials can be classified into the following categories, the border between categories may not be sharp in each case * Inorganic crystal and
compound semiconductor Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of t ...
*
Multiple quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy ...
structures * Organic crystalline materials * Polymer dispersed Liquid crystalline materials (PDLC) * Organic amorphous materials In the field of this research, initial investigations were mainly carried out with inorganic
semiconductors A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
. There have been huge varieties of inorganic crystals such as BaTiO3, KNbO3, LiNbO3 and inorganic compound semiconductors such as
GaAs Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circui ...
,
InP Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors. Manufacturing Indium phosphide ca ...
,
CdTe Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmi ...
are reported in literature. First photorefractive (PR) effect in organic materials was reported in 1991 and then, research of organic photorefractive materials has drawn major attention in recent years compare to inorganic PR semiconductors. This is due to mainly cost effectiveness, relatively easy synthetic procedure, and tunable properties through modifications of chemical or compositional changes.
Polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
or polymer
composite materials A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
have shown excellent photorefractive properties of 100% diffraction efficiency. Most recently,
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wi ...
composites of low
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubb ...
have emerged as highly efficient PR materials. These two classes of organic PR materials are also mostly investigated field. These composite materials have four components -conducting materials, sensitizer,
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molec ...
, and other
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
molecules to be discussed in terms of PR effect. According to the literature, design strategy of hole conductors is mainly p-type based and the issues on the sensitizing are accentuated on n-type electron accepting materials, which are usually of very low content in the blends and thus do not provide a complementary path for electron conduction. In recent publications on organic PR materials, it is common to incorporate a polymeric material with charge transport units in its main or side chain. In this way, the polymer also serves as a host matrix to provide the resultant composite material with a sufficient viscosity for reasons of processing. Most guest-host composites demonstrated in the literature so far are based on hole conducting polymeric materials. The vast majority of the polymers are based on
carbazole Carbazole is an aromatic heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is based on the indole str ...
containing polymers like poly-(N-vinyl carbazole) (PVK) and
polysiloxane A silicone or polysiloxane is a polymer made up of siloxane (−R2Si−O−SiR2−, where R = organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking ...
s (PSX). PVK is the well studied system for huge varieties of applications. In polymers, charge is transported through the
HOMO ''Homo'' () is the genus that emerged in the (otherwise extinct) genus ''Australopithecus'' that encompasses the extant species ''Homo sapiens'' ( modern humans), plus several extinct species classified as either ancestral to or closely relate ...
and the
mobility Mobility may refer to: Social sciences and humanities * Economic mobility, ability of individuals or families to improve their economic status * Geographic mobility, the measure of how populations and goods move over time * Mobilities, a contemp ...
is influenced by the nature of the
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
mixed into the polymer, also it depends on the amount of dopant which may exceed 50 weight percent of the composite for guest-host materials. The mobility decreases as the concentration of charge-transport moieties decreases, and the dopant's polarity and concentration increases. Besides the mobility, the
ionization potential Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
of the polymer and the respective dopant has also significant importance. The relative position of the polymer HOMO with respect to the ionization potential of the other components of the blends determines the extent of extrinsic hole traps in the material. TPD ( tetraphenyldiaminophenyl) based materials are known to exhibit higher charge carrier mobilities and lower ionization potentials compare to carbazole based (PVK) materials. The low ionization potentials of the TPD based materials greatly enhance the
photoconductivity Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation. Wh ...
of the materials. This is partly due to the enhanced complexation of the hole conductor, which is an
electron donor In chemistry, an electron donor is a chemical entity that donates electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. Typical reducing agents undergo permanent chem ...
, with the sensitizing agents, which is an
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
. It was reported a dramatic increase of the photogeneration efficiency from 0.3% to 100% by lowering the ionization potential from 5.90 eV (PVK) to 5.39 eV ( TPD derivative PATPD). This is schematically explained in the diagram using the electronic states of PVK and PATPD.


Applications

As of 2011, no commercial products utilizing organic photorefractive materials exist. All applications described are speculative or performed in research laboratories. Large DC fields required to produce holograms lead to
dielectric breakdown Electrical breakdown or dielectric breakdown is a process that occurs when an electrical insulating material, subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. All insulating mate ...
not suitable outside the laboratory.


Reusable Holographic Displays

Many
materials Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geologic ...
exist for recording static, permanent holograms including
photopolymer A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardeni ...
s, silver halide films,
photoresist A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronic industry. T ...
s, dichromated gelatin, and photorefractives. Materials vary in their maximum diffraction efficiency, required power consumption, and resolution. Photorefractives have a high diffraction efficiency, an average-low power consumption, and a high resolution. Updatable
holograms Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating real three-dimensional images, but it also has a wide range of other applications. In principle, it ...
that do not require glasses are attractive for medical and military imaging. The materials properties required to produce updatable holograms are 100% diffraction efficiency, fast writing time, long image persistence, fast erasing time, and large area. Inorganic materials capable of rapid updating exist but are difficult to grow larger than a cubic centimeter.
Liquid crystal Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. T ...
3D displays exist but require complex computation to produce images which limits their refresh rate and size. Blanche et al. demonstrated in 2008 a 4 in. x 4 in. display that refreshed every few minutes and lasted several hours. Organic photorefractive materials are capable of kHz refresh rates though it is limited by material sensitivity and laser power. Material sensitivity demonstrated in 2010 require kW pulsed lasers.


Tunable Color Filter

White light passed through an organic photorefractive
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structura ...
, leads to the absorption of wavelengths generated by
surface plasmon resonance Surface plasmon resonance (SPR) is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material in a particle stimulated by incident light. SPR is the basis of many standard tools for measu ...
and the reflection of
complementary wavelength In color science, the dominant wavelength is a method of characterizing a color's hue. Along with purity, it makes up one half of the Helmholtz coordinates. A color's dominant wavelength is the wavelength of monochromatic spectral light that evok ...
s. The period of the diffraction grating may be adjusted by modifying to control the wavelengths of the reflected light. This could be used for filter channels,
optical attenuator An optical attenuator, or fiber optic attenuator, is a device used to reduce the power level of an optical signal, either in free space or in an optical fiber. The basic types of optical attenuators are fixed, step-wise variable, and continuously ...
s, and optical color filters


Optical communications

Free-space optical communication Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or ...
s(FSO) can be used for high-bandwidth communication of data by utilizing high frequency lasers. Phase distortions created by the atmosphere can be corrected by a four-wave mixing process utilizing organic photorefractive holograms. The nature of FSO allows images to be transmitted at near original quality in real-time. The correction also corrects for moving images.


Image and Signal Processing

Organic photorefractive materials are a
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
medium in which large amounts of information can be recorded and read. Holograms due to the inherent parallel nature of optical recording are able to quickly process large amounts of data. Holograms that can be quickly produced and read can be used to verify the authenticity of documents similar to a
watermark A watermark is an identifying image or pattern in paper that appears as various shades of lightness/darkness when viewed by transmitted light (or when viewed by reflected light, atop a dark background), caused by thickness or density variations ...
Organic photorefractive correlators use
matched filter In signal processing, a matched filter is obtained by correlating a known delayed signal, or ''template'', with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal wi ...
and Joint Fourier Transform configurations. Logical functions (
AND or AND may refer to: Logic, grammar, and computing * Conjunction (grammar), connecting two words, phrases, or clauses * Logical conjunction in mathematical logic, notated as "∧", "⋅", "&", or simple juxtaposition * Bitwise AND, a boole ...
, OR, NOR,
XOR Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
, NOT) were carried out using two-wave signal processing. High diffraction efficiency allowed a CCD detector to distinguish between light pixels (1
bit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represente ...
s) and dark pixels (0 bits).


References

{{Reflist, colwidth=90em Holography Nonlinear optical materials Organic semiconductors Semiconductor material types