Oligosaccharide
   HOME

TheInfoList



OR:

An oligosaccharide (/ˌɑlɪgoʊˈsækəˌɹaɪd/; from the Greek ὀλίγος ''olígos'', "a few", and σάκχαρ ''sácchar'', "sugar") is a saccharide polymer containing a small number (typically three to ten) of
monosaccharide Monosaccharides (from Greek ''monos'': single, '' sacchar'': sugar), also called simple sugars, are the simplest forms of sugar and the most basic units (monomers) from which all carbohydrates are built. They are usually colorless, water-solub ...
s (simple sugars). Oligosaccharides can have many functions including
cell recognition Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
and
cell adhesion Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indir ...
. They are normally present as
glycan The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate p ...
s: oligosaccharide chains are linked to lipids or to compatible amino acid side chains in proteins, by ''N''- or ''O''-
glycosidic bonds A glycosidic bond or glycosidic linkage is a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. A glycosidic bond is formed between the hemiacetal or hemiketal grou ...
. ''N''-Linked oligosaccharides are always pentasaccharides attached to asparagine via a beta linkage to the amine nitrogen of the side chain.. Alternately, ''O''-linked oligosaccharides are generally attached to
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
or
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
on the alcohol group of the side chain. Not all natural oligosaccharides occur as components of glycoproteins or glycolipids. Some, such as the raffinose series, occur as storage or transport
carbohydrates In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or may ...
in plants. Others, such as maltodextrins or cellodextrins, result from the microbial breakdown of larger polysaccharides such as
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
or cellulose.


Glycosylation

In biology,
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not al ...
is the process by which a carbohydrate is covalently attached to an organic molecule, creating structures such as glycoproteins and glycolipids.


''N''-Linked oligosaccharides

''N''-Linked glycosylation involves oligosaccharide attachment to asparagine via a beta linkage to the amine nitrogen of the side chain. The process of ''N''-linked glycosylation occurs cotranslationally, or concurrently while the proteins are being translated. Since it is added cotranslationally, it is believed that ''N''-linked glycosylation helps determine the folding of polypeptides due to the hydrophilic nature of sugars. All ''N''-linked oligosaccharides are pentasaccharides: five monosaccharides long. In ''N''-glycosylation for eukaryotes, the oligosaccharide substrate is assembled right at the membrane of the
endoplasmatic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
. For prokaryotes, this process occurs at the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. In both cases, the acceptor substrate is an asparagine residue. The asparagine residue linked to an ''N''-linked oligosaccharide usually occurs in the sequence Asn-X-Ser/Thr, where X can be any amino acid except for
proline Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group but is rather a secondary amine. The secondary amine nitrogen is in the prot ...
, although it is rare to see Asp, Glu, Leu, or Trp in this position.


''O''-Linked oligosaccharides

Oligosaccharides that participate in ''O''-linked glycosylation are attached to
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
or
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
on the
hydroxyl group In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy g ...
of the side chain. ''O''-linked glycosylation occurs in the Golgi apparatus, where monosaccharide units are added to a complete polypeptide chain. Cell surface proteins and extracellular proteins are ''O''-glycosylated. Glycosylation sites in ''O''-linked oligosaccharides are determined by the
secondary Secondary may refer to: Science and nature * Secondary emission, of particles ** Secondary electrons, electrons generated as ionization products * The secondary winding, or the electrical or electronic circuit connected to the secondary winding i ...
and
tertiary structures Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function. The structure of these molecules may be considered at any of several length sc ...
of the polypeptide, which dictate where glycosyltransferases will add sugars.


Glycosylated biomolecules

Glycoproteins and glycolipids are by definition covalently bonded to carbohydrates. They are very abundant on the surface of the cell, and their interactions contribute to the overall stability of the cell.


Glycoproteins

Glycoprotein Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycos ...
s have distinct Oligosaccharide structures which have significant effects on many of their properties, affecting critical functions such as antigenicity, solubility, and resistance to proteases. Glycoproteins are relevant as
cell-surface receptors The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
, cell-adhesion molecules, immunoglobulins, and tumor antigens.


Glycolipids

Glycolipid Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connec ...
s are important for cell recognition, and are important for modulating the function of membrane proteins that act as receptors. Glycolipids are lipid molecules bound to oligosaccharides, generally present in the lipid bilayer. Additionally, they can serve as receptors for cellular recognition and cell signaling. The head of the oligosaccharide serves as a binding partner in
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
activity. The binding mechanisms of receptors to the oligosaccharides depends on the composition of the oligosaccharides that are exposed or presented above the surface of the membrane. There is great diversity in the binding mechanisms of glycolipids, which is what makes them such an important target for pathogens as a site for interaction and entrance. For example, the chaperone activity of glycolipids has been studied for its relevance to HIV infection.


Functions


Cell recognition

All cells are coated in either glycoproteins or glycolipids, both of which help determine cell types.
Lectin Lectins are carbohydrate-binding proteins that are highly specific for sugar groups that are part of other molecules, so cause agglutination of particular cells or precipitation of glycoconjugates and polysaccharides. Lectins have a role in rec ...
s, or proteins that bind carbohydrates, can recognize specific oligosaccharides and provide useful information for cell recognition based on oligosaccharide binding. An important example of oligosaccharide cell recognition is the role of glycolipids in determining
blood type A blood type (also known as a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrate ...
s. The various blood types are distinguished by the glycan modification present on the surface of blood cells. These can be visualized using mass spectrometry. The oligosaccharides found on the A, B, and H antigen occur on the non-reducing ends of the oligosaccharide. The H antigen (which indicates an O blood type) serves as a precursor for the A and B antigen. Therefore, a person with A blood type will have the A antigen and H antigen present on the glycolipids of the red blood cell plasma membrane. A person with B blood type will have the B and H antigen present. A person with AB blood type will have A, B, and H antigens present. And finally, a person with O blood type will only have the H antigen present. This means all blood types have the H antigen, which explains why the O blood type is known as the "universal donor". How do transport vesicles know the final destination of the protein that they are transporting? Vesicles are directed by many ways, but the two main ways are: # The sorting signals encoded in the amino acid sequence of the proteins. # The Oligosaccharide attached to the protein. The sorting signals are recognised by specific receptors that reside in the membranes or surface coats of budding vesicles, ensuring that the protein is transported to the appropriate destination.


Cell adhesion

Many cells produce specific carbohydrate-binding proteins known as lectins, which mediate cell adhesion with oligosaccharides. Selectins, a family of lectins, mediate certain cell–cell adhesion processes, including those of leukocytes to endothelial cells. In an immune response, endothelial cells can express certain selectins transiently in response to damage or injury to the cells. In response, a reciprocal selectin–oligosaccharide interaction will occur between the two molecules which allows the white blood cell to help eliminate the infection or damage. Protein-Carbohydrate bonding is often mediated by
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
ing and van der Waals forces.


Dietary oligosaccharides

Fructo-oligosaccharides (FOS), which are found in many vegetables, are short chains of
fructose Fructose, or fruit sugar, is a Ketose, ketonic monosaccharide, simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and galacto ...
molecules. They differ from fructans such as inulin, which as polysaccharides have a much higher degree of polymerization than FOS and other oligosaccharides, but like inulin and other fructans, they are considered soluble dietary fibre. Using fructo-oligosaccharides (FOS) as fiber supplementations is shown to have an effect on glucose homeostasis quite similar to insulin. These (FOS) supplementations which can be considered Prebiotics which produce something called a short-chain fructo-oligosaccharides (scFOS). Galacto-oligosaccharides (GOS) in particular are used to create a prebiotic effect for infants that are not being breastfed.
Galactooligosaccharides Galactooligosaccharides (GOS), also known as oligogalactosyllactose, oligogalactose, oligolactose or transgalactooligosaccharides (TOS), belong to the group of prebiotics. Prebiotics are defined as non-digestible food ingredients that beneficiall ...
(GOS), which also occur naturally, consist of short chains of galactose molecules. Human milk is an example of this and contains oligosaccharides, known as
human milk oligosaccharide Human milk oligosaccharides (HMOs), also known as human milk glycans, are short polymers of simple sugars that can be found in high concentrations in human breast milk. Human milk oligosaccharides promote the development of the immune system, can r ...
s (HMOs), which are derived from
lactose Lactose is a disaccharide sugar synthesized by galactose and glucose subunits and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from ' (gen. '), the Latin word for milk, plus the suffix '' - ...
. These oligosaccharides have biological function in the development of the
gut flora Gut microbiota, gut microbiome, or gut flora, are the microorganisms, including bacteria, archaea, fungi, and viruses that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut mi ...
of
infant An infant or baby is the very young offspring of human beings. ''Infant'' (from the Latin word ''infans'', meaning 'unable to speak' or 'speechless') is a formal or specialised synonym for the common term ''baby''. The terms may also be used to ...
s. Examples include lacto-N-tetraose, lacto-N-neotetraose, and lacto-N-fucopentaose. These compounds cannot be
digested Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small inte ...
in the human
small intestine The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through the p ...
, and instead pass through to the large intestine, where they promote the growth of ''
Bifidobacteria ''Bifidobacterium'' is a genus of gram-positive, nonmotile, often branched anaerobic bacteria. They are ubiquitous inhabitants of the gastrointestinal tract though strains have been isolated from the vagina and mouth ('' B. dentium'') of mamma ...
'', which are beneficial to gut health. HMOs can also protect infants by acting as decoy receptors against viral infection. HMOs accomplish this by mimicking viral receptors which draws the virus particles away from host cells. Experimentation has been done to determine how glycan-binding occurs between HMOs and many viruses such as influenza, rotavirus, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV). The strategy HMOs employ could be used to create new antiviral drugs. Mannan oligosaccharides (MOS) are widely used in
animal feed Animal feed is food given to domestic animals, especially livestock, in the course of animal husbandry. There are two basic types: fodder and forage. Used alone, the word ''feed'' more often refers to fodder. Animal feed is an important input to ...
to improve gastrointestinal health. They are normally obtained from the yeast cell walls of '' Saccharomyces cerevisiae''. Mannan oligosaccharides differ from other oligosaccharides in that they are not fermentable and their primary mode of action includes agglutination of type-1 fimbria pathogens and immunomodulation.


Sources

Oligosaccharides are a component of
fibre Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
from plant tissue. FOS and inulin are present in Jerusalem artichoke,
burdock ''Arctium'' is a genus of biennial plants commonly known as burdock, family Asteraceae. Native to Europe and Asia, several species have been widely introduced worldwide. Burdock's clinging properties, in addition to providing an excellent mecha ...
, chicory,
leek The leek is a vegetable, a cultivar of ''Allium ampeloprasum'', the broadleaf wild leek ( syn. ''Allium porrum''). The edible part of the plant is a bundle of leaf sheaths that is sometimes erroneously called a stem or stalk. The genus ''Alli ...
s, onions, and asparagus. Inulin is a significant part of the daily diet of most of the world’s population. FOS can also be synthesized by enzymes of the fungus '' Aspergillus niger'' acting on
sucrose Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula . For human consumption, sucrose is extracted and refined ...
. GOS is naturally found in
soybeans The soybean, soy bean, or soya bean (''Glycine max'') is a species of legume native to East Asia, widely grown for its edible bean, which has numerous uses. Traditional unfermented food uses of soybeans include soy milk, from which tofu and ...
and can be synthesized from
lactose Lactose is a disaccharide sugar synthesized by galactose and glucose subunits and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from ' (gen. '), the Latin word for milk, plus the suffix '' - ...
. FOS, GOS, and inulin are also sold as nutritional supplements.


See also

* * *


References


External links

* {{Authority control Nutrition Sugar substitutes Carbohydrate chemistry