Nanochemistry
   HOME

TheInfoList



OR:

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects. Nanochemistry is used in chemical, materials and physical science as well as engineering, biological, and medical applications.
Silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
,
polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones. PDMS is the most widely used silicon-based organic polymer, as its ...
,
cadmium selenide Cadmium selenide is an inorganic compound with the formula Cadmium, CdSelenide, Se. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type semiconductor, n-type. Much of the current research on this compound i ...
,
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
, and
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
are materials that show its transformative power. Nanochemistry can make the most effective contrast agent of
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
out of iron oxide (rust) which can detect cancers and kill them at their initial stages. Silica (glass) can be used to bend or stop lights in their tracks.
Developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
also use
silicone A silicone or polysiloxane is a polymer made up of siloxane (−R2Si−O−SiR2−, where R = organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking ...
to make circuits for the fluids used in
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
detection. Nano-construct synthesis leads to the self-assembly of the building blocks into the functional structures that may be useful for electronic,
photonic Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
, medical, or bioanalytical problems. Nanochemical methods can be used to create carbon nanomaterials such as
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s,
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
, and
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s which have gained attention in recent years due to their remarkable mechanical and electrical properties.


Applications


Medicine


Magnetic Resonance Imaging Detection (MDR)

Over the past two decades, ion oxide nanoparticles for biomedical use had increased dramatically, largely due to its ability of non-invasive imaging, targeting and triggering drug release, or cancer therapy. Stem or immune cell could be marked with ion oxide nanoparticles to be detected by
Magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio wave ...
(MDR). However, the concentration of ion oxide nanoparticles needs to be high enough to enable the significant detection by MDR. Due to the limited understanding of physicochemical nature of ion oxide nanoparticles in biological systems, more research is needed to ensure nanoparticles can be controlled under certain conditions for medical usage without posing harm to human.


Drug delivery

Emerging methods of drug delivery involving nanotechnological methods can be useful by improving bodily response, specific targeting, and non-toxic metabolism. Many nanotechnological methods and materials can be functionalized for drug delivery. Ideal materials employ a controlled-activation nanomaterial to carry a drug cargo into the body. Mesoporous silica nanoparticles (MSN) have increased in research popularity due to their large surface area and flexibility for various individual modifications while maintaining high-resolution performance under imaging techniques. Activation methods greatly vary across nanoscale drug delivery molecules, but the most commonly used activation method uses specific wavelengths of light to release the cargo. Nanovalve-controlled cargo release uses low-intensity light and plasmonic heating to release the cargo in a variation of MSN containing gold molecules. The two-photon activated photo-transducer (2-NPT) uses near
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
wavelengths of light to induce the breaking of a
disulfide bond In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
to release the cargo. Recently,
nanodiamond Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surfa ...
s have demonstrated potential in drug delivery due to non-toxicity, spontaneous absorption through the skin, and the ability to enter the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable membrane, semipermeable border of endothelium, endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of ...
. The unique structure of carbon nanotubes also gives rise to many innovative inventions of new medical methods. As more medicine is made at the nano level to revolutionize the ways for human to detect and treat diseases, carbon nanotubes become a stronger candidate in new detection methods and therapeutic strategies. Specially, carbon nanotubes can be transformed into sophisticated biomolecule and allow its detection through changes in the carbon nanotube fluorescence spectra. Also, carbon nanotubes can be designed to match the size of small drug and endocitozed by a target cell, hence becoming a delivery agent.


Tissue engineering

Cells are very sensitive to nanotopographical features, so optimization of surfaces in
tissue engineering Tissue engineering is a biomedical engineering discipline that uses a combination of Cell (biology), cells, engineering, Materials science, materials methods, and suitable biochemistry, biochemical and physicochemical factors to restore, maintai ...
has pushed towards implantation. Under appropriate conditions, a carefully crafted 3-dimensional
scaffold Scaffolding, also called scaffold or staging, is a temporary structure used to support a work crew and materials to aid in the construction, maintenance and repair of buildings, bridges and all other man-made structures. Scaffolds are widely use ...
is used to direct cell seeds toward artificial organ growth. The 3-D scaffold incorporates various nanoscale factors that control the environment for optimal and appropriate functionality. The scaffold is an analog of the ''in vivo''
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide stru ...
''in vitro'', allowing for successful artificial organ growth by providing the necessary, complex biological factors ''in vitro''.


Wounds healing

For abrasions and wounds, nanochemistry has demonstrated applications in improving the healing process.
Electrospinning Electrospinning is a fiber production method that uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers. Electrospinning shares characteristics of both elec ...
is a
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer, monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are ...
method used biologically in tissue engineering but can also be used for wound dressing and drug delivery. This produces
nanofibers Nanofibers are fibers with diameters in the nanometer range (typically, between 1 nm and 1 μm). Nanofibers can be generated from different polymers and hence have different physical properties and application potentials. Examples of natural polyme ...
that encourage
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation re ...
,
antibacterial An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of ...
properties, in controlled environment. These properties appear macroscopically, however, nanoscale versions may show improved efficiency due to nanotopographical features. Targeted interfaces between nanofibers and wounds have higher surface area interactions and are advantageous ''in vivo''. There is evidence that certain nanoparticles of silver are useful to inhibit some
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1 ...
and
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
.


Cosmetics

Materials in certain cosmetics such as sun cream, moisturizer, and deodorant may have potentials benefits from the use of nanochemistry. Manufacturers are working to increase the effectiveness of various cosmetics by facilitating oil nanoemulsion. These particles have extended the boundaries in managing wrinkling, dehydrated, and inelastic skin associated with aging. In
sunscreen Sunscreen, also known as sunblock or sun cream, is a photoprotective topical product for the skin that mainly absorbs, or to a much lesser extent reflects, some of the sun's ultraviolet (UV) radiation and thus helps protect against sunburn and ...
, titanium dioxide and zinc oxide nanoparticles prove to be effective UV filters but can also penetrate through skin. These chemicals protect the skin against harmful
UV light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
by absorbing or reflecting the light and prevent the skin from retaining full damage by
photoexcitation Photoexcitation is the production of an excited state of a quantum system by photon absorption. The excited state originates from the interaction between a photon and the quantum system. Photons carry energy that is determined by the wavelengths ...
of
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
in the nanoparticle.


Electrics


Nanowire compositions

Scientists have devised a large number of
nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
compositions with controlled length, diameter, doping, and surface structure by using vapor and solution phase strategies. These oriented single crystals are being used in
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
nanowire devices such as
diodes A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
,
transistors upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch e ...
,
logic circuits A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, ...
,
lasers A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
, and sensors. Since nanowires have a one-dimensional structure, meaning a large surface-to-volume ratio, the diffusion resistance decreases. In addition, their efficiency in electron transport which is due to the quantum confinement effect, makes their electrical properties be influenced by minor perturbation. Therefore, the use of these nanowires in
nanosensor Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, ...
elements increases the sensitivity in electrode response. As mentioned above, the one-dimensionality and chemical flexibility of the semiconductor nanowires make them applicable in nanolasers. Peidong Yang and his co-workers have done some research on the room-temperature ultraviolet nanowires used in nanolasers. They have concluded that using short wavelength nanolasers has applications in different fields such as optical computing, information storage, and microanalysis.


Catalysis


Nanoenzymes (or nanozymes)

The small size of nanoenzymes (or nanozymes) (1–100 nm) has provided them with unique optical, magnetic, electronic, and catalytic properties. Moreover, the control of surface functionality of nanoparticles and the predictable nanostructure of these small-sized enzymes have allowed them to create a complex structure on their surface that can meet the needs of specific applications


Research areas


Nanodiamonds


Synthesis

Fluorescent nanoparticles are highly sought after. They have broad applications, but their use in macroscopic arrays allows them efficient in applications of
plasmonics Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing opt ...
,
photonics Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
, and
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
communications. While there are many methods in assembling nanoparticles array, especially
gold nanoparticles Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particle ...
, they tend to be weakly bonded to their substrate so they can't be used for wet chemistry processing steps or
lithography Lithography () is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by the German a ...
. Nanodiamonds allow for greater variability in access that can subsequently be used to couple plasmonic waveguides to realize quantum plasmonic circuitry.
Nanodiamond Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surfa ...
s can be synthesized by employing nanoscale carbonaceous seeds created in a single step by using a mask-free electron beam-induced position technique to add amine groups. This assembles nanodiamonds into an array. The presence of dangling bonds at the nanodiamond surface allows them to be functionalized with a variety of
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
. The surfaces of these nanodiamonds are terminated with
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic ...
groups, enabling their attachment to amine-terminated surfaces through carbodiimide coupling chemistry. This process affords a high yield that relies on covalent bonding between the
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen atoms have been replaced by a substituen ...
and carboxyl functional groups on amorphous carbon and nanodiamond surfaces in the presence of EDC. Thus unlike gold nanoparticles, they can withstand processing and treatment, for many device applications.


Fluorescent (nitrogen vacancy)

Fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
properties in nanodiamonds arise from the presence of nitrogen-vacancy (NV) centers, nitrogen atoms next to a vacancy. Fluorescent nanodiamond (FND) was invented in 2005 and has since been used in various fields of study. The invention received a US patent in 2008 , and a subsequent patent in 2012 . NV centers can be created by irradiating nanodiamonds with high-energy particles (electrons, protons, helium ions), followed by vacuum-annealing at 600–800°C. Irradiation forms vaccines in the diamond structure while vacuum-annealing migrates these vacancies, which will get trapped by nitrogen atoms within the nanodiamond. This process produces two types of NV centers. Two types of NV centers are formed—neutral (NV0) and negatively charged (NV–)—and these have different emission spectra. The NV– the center is of particular interest because it has an ''S'' = 1 spin ground state that can be spin-polarized by optical pumping and manipulated using electron paramagnetic resonance. Fluorescent nanodiamonds combine the advantages of semiconductor
quantum dots Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
(small size, high photostability, bright multicolor fluorescence) with biocompatibility, non-toxicity, and rich surface chemistry, which means that they have the potential to revolutionize ''Vivo'' imaging applications.


Drug-delivery and biological compatibility

Nanodiamonds can self-assemble and a wide range of small molecules, proteins antibodies, therapeutics, and nucleic acids can bind to its surface allowing for drug delivery, protein-mimicking, and surgical implants. Other potential biomedical applications are the use of nanodiamonds as support for solid-phase peptide synthesis and as sorbents for detoxification and separation and fluorescent nanodiamonds for biomedical imaging. Nanodiamonds are capable of biocompatibility, the ability to carry a broad range of therapeutics, dispersibility in water and scalability, and the potential for targeted therapy all properties needed for a drug delivery platform. The small size, stable core, rich surface chemistry, ability to self-assemble, and low
cytotoxicity Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating cells ...
of nanodiamonds have led to suggestions that they could be used to mimic
globular protein In biochemistry, globular proteins or spheroproteins are spherical ("globe-like") proteins and are one of the common protein types (the others being fibrous, disordered and membrane proteins). Globular proteins are somewhat water-soluble (formi ...
s. Nanodiamonds have been mostly studied as potential injectable therapeutic agents for generalized drug delivery, but it has also been shown that films of Parylene nanodiamond composites can be used for localized sustained release of drugs over periods ranging from two days to one month.


Nanolithography

Nanolithography Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering (patterning e.g. etching, depositing, writing, printing etc) of nanometer-scale structures on various materials. The modern term reflects on ...
is the technique to pattern materials and build devices under nano-scale. Nanolithography is often used together with thin-film-deposition, self-assembly, and self-organization techniques for various nanofabrications purpose. Many practical applications make use of nanolithography, including
semiconductor chip An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny M ...
s in computers. There are many types of nanolithography, which include: *
Photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
*
Electron-beam lithography Electron-beam lithography (often abbreviated as e-beam lithography, EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron b ...
*
X-ray lithography X-ray lithography is a process used in semiconductor device fabrication industry to selectively remove parts of a thin film of photoresist. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or ...
*
Extreme ultraviolet lithography Extreme ultraviolet lithography (also known as EUV or EUVL) is an optical lithography technology used in steppers, machines that make integrated circuits (ICs) for computers and other electronic devices. It uses a range of extreme ultraviolet (EUV) ...
* Light coupling nanolithography *
Scanning probe microscope Scan may refer to: Acronyms * Schedules for Clinical Assessment in Neuropsychiatry (SCAN), a psychiatric diagnostic tool developed by WHO * Shared Check Authorization Network (SCAN), a database of bad check writers and collection agency for bad ...
*
Nanoimprint lithography Nanoimprint lithography (NIL) is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subse ...
*
Dip-Pen nanolithography Dip pen nanolithography (DPN) is a scanning probe lithography technique where an atomic force microscope, atomic force microscope (AFM) tip is used to create patterns directly on a range of substances with a variety of inks. A common example of th ...
*
Soft lithography In technology, soft lithography is a family of techniques for fabricating or replicating structures using "elastomeric stamps, molds, and conformable photomasks". It is called "soft" because it uses elastomeric materials, most notably PDMS. So ...
Each nanolithography technique has varying factors of the resolution, time consumption, and cost. There are three basic methods used by nanolithography. One involves using a resist material that acts as a "mask", known as photoresists, to cover and protect the areas of the surface that are intended to be smooth. The uncovered portions can now be etched away, with the protective material acting as a stencil. The second method involves directly carving the desired pattern. Etching may involve using a beam of quantum particles, such as electrons or light, or chemical methods such as
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
or
Self-assembled monolayer Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact ...
s. The third method places the desired pattern directly on the surface, producing a final product that is ultimately a few nanometers thicker than the original surface. To visualize the surface to be fabricated, the surface must be visualized by a nano-resolution microscope, which includes the
scanning probe microscopy Scan may refer to: Acronyms * Schedules for Clinical Assessment in Neuropsychiatry (SCAN), a psychiatric diagnostic tool developed by WHO * Shared Check Authorization Network (SCAN), a database of bad check writers and collection agency for bad ...
and the
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
. Both microscopes can also be engaged in processing the final product.


Photoresists

Photoresists are light-sensitive materials, composed of a polymer, a sensitizer, and a solvent. Each element has a particular function. The polymer changes its structure when it is exposed to radiation. The solvent allows the photoresist to be spun and to form thin layers over the wafer surface. Finally, the sensitizer, or inhibitor, controls the photochemical reaction in the polymer phase. Photoresists can be classified as positive or negative. In positive photoresists, the photochemical reaction that occurs during exposure, weakens the polymer, making it more soluble to the developer so the positive pattern is achieved. Therefore, the masks contains an exact copy of the pattern, which is to remain on the wafer, as a stencil for subsequent processing. In the case of negative photoresists, exposure to light causes the polymerization of the photoresist so the negative resist remains on the surface of the substrate where it is exposed, and the developer solution removes only the unexposed areas. Masks used for negative photoresists contain the inverse or photographic “negative” of the pattern to be transferred. Both negative and positive photoresists have their own advantages. The advantages of negative photoresists are good adhesion to silicon, lower cost, and a shorter processing time. The advantages of positive photoresists are better resolution and thermal stability.


Nanometer-size clusters

Monodisperse, nanometer-size clusters (also known as
nanoclusters Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semico ...
) are synthetically grown crystals whose size and structure influence their properties through the effects of
quantum confinement A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captur ...
. One method of growing these crystals is through inverse micellar cages in non-aqueous solvents. Research conducted on the optical properties of MoS2 nanoclusters compared them to their bulk crystal counterparts and analyzed their absorbance spectra. The analysis reveals that size dependence of the absorbance spectrum by bulk crystals is continuous, whereas the absorbance spectrum of nanoclusters takes on discrete energy levels. This indicates a shift from solid-like to molecular-like behavior which occurs at a reported cluster the size of 4.5 – 3.0 nm. Interest in the magnetic properties of nanoclusters exists due to their potential use in
magnetic recording Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is ac ...
, magnetic fluids,
permanent magnets A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
, and
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Analysis of Fe clusters shows behavior consistent with
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
or
superparamagnetic Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time be ...
behavior due to strong magnetic interactions within clusters. Dielectric properties of nanoclusters are also a subject of interest due to their possible applications in catalysis,
photocatalysis In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a catalyst. In catalyzed photolysis, light is absorbed by an adsorbed substrate. In photogenerated catalysis, the photocatalytic activity depends on the abili ...
, micro capacitors,
microelectronics Microelectronics is a subfield of electronics. As the name suggests, microelectronics relates to the study and manufacture (or microfabrication) of very small electronic designs and components. Usually, but not always, this means micrometre-sc ...
, and
nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typica ...
.


Nanothermodynamics

The idea of nanothermodynamics was initially proposed by T. L. Hill in 1960, theorizing the differences between differential and integral forms of properties due to small sizes. The size, shape, and environment of a nanoparticle affect the
power law In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a proportional relative change in the other quantity, inde ...
, or its proportionality, between nano and macroscopic properties. Transitioning from macro to nano changes the proportionality from exponential to power. Therefore, nanothermodynamics and the theory of statistical mechanics are related in concept.


Notable researchers

There are several researchers in nanochemistry that have been credited with the development of the field. Geoffrey A. Ozin, from the University of Toronto, is known as one of the "founding fathers of Nanochemistry" due to his four and a half decades of research on this subject. This research includes the study of matrix isolation laser Raman spectroscopy, naked metal clusters chemistry and
photochemistry Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet (wavelength from 100 to 400  nm), visible light (400–7 ...
, nanoporous materials, hybrid
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to nan ...
, mesoscopic materials, and ultrathin inorganic
nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
s. Another chemist who is also viewed as one of the nanochemistry's pioneers is
Charles M. Lieber Charles M. Lieber (born 1959) is an American chemist, a pioneer in nanoscience and nanotechnology. In 2011, Lieber was named the leading chemist in the world for the decade 2000–2010 by Thomson Reuters, based on the impact of his scientific ...
at
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ...
. He is known for his contributions to the development of nano-scale technologies, particularly in the field of biology and medicine. The technologies include nanowires, a new class of quasi-one-dimensional materials that have demonstrated superior electrical, optical, mechanical, and thermal properties and can be used potentially as biological sensors. Research under Lieber has delved into the use of nanowires mapping brain activity. Shimon Weiss, a professor at the
University of California, Los Angeles The University of California, Los Angeles (UCLA) is a public land-grant research university in Los Angeles, California. UCLA's academic roots were established in 1881 as a teachers college then known as the southern branch of the California St ...
, is known for his research of fluorescent semiconductor nanocrystals, a subclass of
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
s, for biological labeling.
Paul Alivisatos Armand Paul Alivisatos (born November 12, 1959) is an American chemist who serves as the 14th president of the University of Chicago. He is a pioneer in nanomaterials development and an authority on the fabrication of nanocrystals and their use i ...
, from the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
, is also notable for his research on the fabrication and use of
nanocrystal A ''nanocrystal'' is a material particle having at least one dimension smaller than 100 nanometres, based on quantum dots (a nanoparticle) and composed of atoms in either a single- or poly-crystalline arrangement. The size of nanocrystals dist ...
s. This research has the potential to develop insight into the mechanisms of small-scale particles such as the process of nucleation, cation exchange, and branching. A notable application of these crystals is the development of quantum dots.
Peidong Yang Peidong Yang (; born 1971) is a Chinese-American chemist, material scientist, and businessman. He is currently a professor at the University of California, Berkeley (since 1999) and a member of the American Academy of Arts and Sciences. He is a P ...
, another researcher from the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
, is also notable for his contributions to the development of 1-dimensional nanostructures. The Yang group has active research projects in the areas of nanowire photonics, nanowire-based solar cells, nanowires for solar to fuel conversion, nanowire thermoelectrics, nanowire-cell interface, nanocrystal catalysis, nanotube nanofluidics, and
plasmonics Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing opt ...
.


References


Selected books

* J.W. Steed, D.R. Turner, K. Wallace ''Core Concepts in Supramolecular Chemistry and Nanochemistry'' (Wiley, 2007) 315p. * Brechignac C., Houdy P., Lahmani M. (Eds.) ''Nanomaterials and Nanochemistry'' (Springer, 2007) 748p. * H. Watarai, N. Teramae, T. Sawada ''Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces'' (Nanostructure Science and Technology) 2005. 321p. * Ozin G., Arsenault A.C., Cademartiri L
''Nanochemistry: A Chemical Approach to Nanomaterials''
2nd Eds. (
Royal Society of Chemistry The Royal Society of Chemistry (RSC) is a learned society (professional association) in the United Kingdom with the goal of "advancing the chemistry, chemical sciences". It was formed in 1980 from the amalgamation of the Chemical Society, the Ro ...
, 2008) 820p. * {{Branches of chemistry Nanotechnology Chemistry Nanomaterials Nanoparticles