HOME

TheInfoList



OR:

Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
to detonate. There are three existing basic design types: * pure fission weapons, the simplest and least technically demanding, were the first nuclear weapons built and have so far been the only type ever used in warfare (by the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territorie ...
on
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the north ...
during
WWII World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
). *
boosted fission weapon A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The neutrons released by the fusion reactions add to the neutrons released du ...
s increase yield beyond that of the implosion design by using small quantities of fusion fuel to enhance the fission chain reaction. Boosting can more than double the weapon's fission energy yield. * staged thermonuclear weapons are essentially arrangements of two or more "stages", most usually two. The first stage is normally a boosted fission weapon as above (except for the earliest thermonuclear weapons, which used a pure fission weapon instead). Its detonation causes it to shine intensely with x-radiation, which illuminates and implodes the second stage filled with a large quantity of fusion fuel. This sets in motion a sequence of events which results in a thermonuclear, or fusion, burn. This process affords potential yields up to hundreds of times those of fission weapons. A fourth type,
pure fusion weapon A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission "primary" explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon ...
s, are a theoretical possibility. Such weapons would produce far fewer radioactive byproducts than current designs, although they would release huge numbers of neutrons. Pure fission weapons historically have been the first type to be built by new nuclear powers. Large industrial states with well-developed nuclear arsenals have two-stage thermonuclear weapons, which are the most compact, scalable, and cost effective option once the necessary technical base and industrial infrastructure are built. Most known innovations in nuclear weapon design originated in the United States, although some were later developed independently by other states. In early news accounts, pure fission weapons were called atomic bombs or A-bombs and weapons involving fusion were called hydrogen bombs or H-bombs. Practitioners of nuclear policy, however, favor the terms nuclear and thermonuclear, respectively.


Nuclear reactions

Nuclear fission separates or splits heavier atoms to form lighter atoms. Nuclear fusion combines lighter atoms to form heavier atoms. Both reactions generate roughly a million times more energy than comparable chemical reactions, making nuclear bombs a million times more powerful than non-nuclear bombs, which a French patent claimed in May 1939. In some ways, fission and fusion are opposite and complementary reactions, but the particulars are unique for each. To understand how nuclear weapons are designed, it is useful to know the important similarities and differences between fission and fusion. The following explanation uses rounded numbers and approximations.


Fission

When a free neutron hits the nucleus of a fissile atom like
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exis ...
(235U), the uranium nucleus splits into two smaller nuclei called fission fragments, plus more neutrons (for 235U three as often as two; an average of 2.5 per fission). The fission chain reaction in a supercritical mass of fuel can be self-sustaining because it produces enough surplus neutrons to offset losses of neutrons escaping the supercritical assembly. Most of these have the speed (kinetic energy) required to cause new fissions in neighboring uranium nuclei. The U-235 nucleus can split in many ways, provided the atomic numbers add up to 92 and the atomic masses add to 236 (uranium plus the extra neutron). The following equation shows one possible split, namely into strontium-95 (95Sr), xenon-139 (139Xe), and two neutrons (n), plus energy: :::\ ^\mathrm + \mathrm \longrightarrow ^\mathrm + ^\mathrm + 2\ \mathrm + 180\ \mathrm The immediate energy release per atom is about 180 million
electron volt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. ...
s (MeV); i.e., 74 TJ/kg. Only 7% of this is gamma radiation and kinetic energy of fission neutrons. The remaining 93% is kinetic energy (or energy of motion) of the charged fission fragments, flying away from each other mutually repelled by the positive charge of their protons (38 for strontium, 54 for xenon). This initial kinetic energy is 67 TJ/kg, imparting an initial speed of about 12,000 kilometers per second. The charged fragments' high electric charge causes many inelastic
coulomb collision A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. Th ...
s with nearby nuclei, and these fragments remain trapped inside the bomb's fissile pit and tamper until their motion is converted into heat. Given the speed of the fragments and the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
between nuclei in the compressed fuel assembly (for the implosion design), this takes about a millionth of a second (a microsecond), by which time the core and tamper of the bomb have expanded to plasma several meters in diameter with a temperature of tens of millions of degrees Celsius. This is hot enough to emit
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
in the X-ray spectrum. These X-rays are absorbed by the surrounding air, producing the fireball and blast of a nuclear explosion. Most fission products have too many neutrons to be stable so they are radioactive by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
, converting neutrons into protons by throwing off beta particles (electrons) and gamma rays. Their half lives range from milliseconds to about 200,000 years. Many decay into isotopes that are themselves radioactive, so from 1 to 6 (average 3) decays may be required to reach stability. In reactors, the radioactive products are the nuclear waste in spent fuel. In bombs, they become radioactive fallout, both local and global. Meanwhile, inside the exploding bomb, the free neutrons released by fission carry away about 3% of the initial fission energy. Neutron kinetic energy adds to the blast energy of a bomb, but not as effectively as the energy from charged fragments, since neutrons do not give up their kinetic energy as quickly in collisions with charged nuclei or electrons. The dominant contribution of fission neutrons to the bomb's power is the initiation of subsequent fissions. Over half of the neutrons escape the bomb core, but the rest strike 235U nuclei causing them to fission in an exponentially growing chain reaction (1, 2, 4, 8, 16, etc.). Starting from one atom, the number of fissions can theoretically double a hundred times in a microsecond, which could consume all uranium or plutonium up to hundreds of tons by the hundredth link in the chain. Typically in a modern weapon, the weapon's pit contains of plutonium and at detonation produces approximately yield, representing the fissioning of approximately of plutonium. Materials which can sustain a chain reaction are called
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typ ...
. The two fissile materials used in nuclear weapons are: 235U, also known as
highly enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
(HEU), oralloy (Oy) meaning Oak Ridge Alloy, or 25 (the last digits of the atomic number, which is 92 for uranium, and the atomic weight, here 235, respectively); and 239Pu, also known as plutonium, or 49 (from 94 and 239). Uranium's most common isotope, 238U, is fissionable but not fissile, meaning that it cannot sustain a chain reaction because its daughter fission neutrons are not (on average) energetic enough to cause follow-on 238U fissions. However, the neutrons released by fusion of the heavy hydrogen isotopes
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
and
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
will fission 238U. This 238U fission reaction in the outer jacket of the secondary assembly of a two-stage thermonuclear bomb produces by far the greatest fraction of the bomb's energy yield, as well as most of its radioactive debris. For national powers engaged in a nuclear arms race, this fact of 238U's ability to fast-fission from thermonuclear neutron bombardment is of central importance. The plenitude and cheapness of both bulk dry fusion fuel (lithium deuteride) and 238U (a byproduct of uranium enrichment) permit the economical production of very large nuclear arsenals, in comparison to pure fission weapons requiring the expensive 235U or 239Pu fuels.


Fusion

Fusion produces neutrons which dissipate energy from the reaction. In weapons, the most important fusion reaction is called the D-T reaction. Using the heat and pressure of fission, hydrogen-2, or deuterium (2D), fuses with hydrogen-3, or tritium (3T), to form helium-4 (4He) plus one neutron (n) and energy: :::^2\mathrm + ^3\mathrm \longrightarrow ^4\mathrm + n + 17.6\ \mathrm The total energy output, 17.6 MeV, is one tenth of that with fission, but the ingredients are only one-fiftieth as massive, so the energy output per unit mass is approximately five times as great. In this fusion reaction, 14 of the 17.6 MeV (80% of the energy released in the reaction) shows up as the kinetic energy of the neutron, which, having no electric charge and being almost as massive as the hydrogen nuclei that created it, can escape the scene without leaving its energy behind to help sustain the reaction – or to generate x-rays for blast and fire. The only practical way to capture most of the fusion energy is to trap the neutrons inside a massive bottle of heavy material such as lead, uranium, or plutonium. If the 14 MeV neutron is captured by uranium (of either isotope; 14 MeV is high enough to fission both 235U and 238U) or plutonium, the result is fission and the release of 180 MeV of fission energy, multiplying the energy output tenfold. For weapon use, fission is necessary to start fusion, helps to sustain fusion, and captures and multiplies the energy carried by the fusion neutrons. In the case of a neutron bomb (see below), the last-mentioned factor does not apply, since the objective is to facilitate the escape of neutrons, rather than to use them to increase the weapon's raw power.


Tritium production

An essential nuclear reaction is the one that creates
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
, or hydrogen-3. Tritium is employed in two ways. First, pure tritium gas is produced for placement inside the cores of boosted fission devices in order to increase their energy yields. This is especially so for the fission primaries of thermonuclear weapons. The second way is indirect, and takes advantage of the fact that the neutrons emitted by a supercritical fission "spark plug" in the secondary assembly of a two-stage thermonuclear bomb will produce tritium ''in situ'' when these neutrons collide with the lithium nuclei in the bomb's lithium deuteride fuel supply. Elemental gaseous tritium for fission primaries is also made by bombarding
lithium-6 Naturally occurring lithium (3Li) is composed of two stable isotopes, lithium-6 and lithium-7, with the latter being far more abundant on Earth. Both of the natural isotopes have an unexpectedly low nuclear binding energy per nucleon ( for lit ...
(6Li) with
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s (n), only in a nuclear reactor. This neutron bombardment will cause the lithium-6 nucleus to split, producing an alpha particle, or
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
-4 (4He), plus a triton (3T) and energy: :::^6\mathrm + n \longrightarrow ^4\mathrm + ^3\mathrm + 5\ \mathrm The neutrons are supplied by the nuclear reactor in a way similar to production of plutonium 239Pu from 238U feedstock: target rods of the 6Li feedstock are arranged around a uranium-fueled core, and are removed for processing once it has been calculated that most of the lithium nuclei have been transmuted to tritium. Of the four basic types of nuclear weapon, the first, pure fission, uses the first of the three nuclear reactions above. The second, fusion-boosted fission, uses the first two. The third, two-stage thermonuclear, uses all three.


Pure fission weapons

The first task of a nuclear weapon design is to rapidly assemble a
supercritical mass In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fissio ...
of fissile (weapon grade) uranium or plutonium. A supercritical mass is one in which the percentage of fission-produced neutrons captured by other neighboring fissile nuclei is large enough that each fission event, on average, causes more than one follow-on fission event. Neutrons released by the first fission events induce subsequent fission events at an exponentially accelerating rate. Each follow-on fissioning continues a sequence of these reactions that works its way throughout the supercritical mass of fuel nuclei. This process is conceived and described colloquially as the
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series of these reactions. The specific nu ...
. To start the chain reaction in a supercritical assembly, at least one free neutron must be injected and collide with a fissile fuel nucleus. The neutron joins with the nucleus (technically a fusion event) and destabilizes the nucleus, which explodes into two middleweight nuclear fragments (from the severing of the
strong nuclear force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
holding the mutually-repulsive protons together), plus two or three free neutrons. These race away and collide with neighboring fuel nuclei. This process repeats over and over until the fuel assembly goes subcritical (from thermal expansion), after which the chain reaction shuts down because the daughter neutrons can no longer find new fuel nuclei to hit before escaping the less-dense fuel mass. Each following fission event in the chain approximately doubles the neutron population (net, after losses due to some neutrons escaping the fuel mass, and others that collide with any non-fuel impurity nuclei present). For the gun assembly method (see below) of supercritical mass formation, the fuel itself can be relied upon to initiate the chain reaction. This is because even the best weapon-grade uranium contains a significant number of 238U nuclei. These are susceptible to
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
events, which occur randomly (it is a quantum mechanical phenomenon). Because the fissile material in a gun-assembled critical mass is not compressed, the design need only ensure the two subcritical masses remain close enough to each other long enough that a 238U spontaneous fission will occur while the weapon is in the vicinity of the target. This is not difficult to arrange as it takes but a second or two in a typical-size fuel mass for this to occur. (Still, many such bombs meant for delivery by air (gravity bomb, artillery shell or rocket) use injected neutrons to gain finer control over the exact detonation altitude, important for the destructive effectiveness of airbursts.) This condition of spontaneous fission highlights the necessity to assemble the supercritical mass of fuel very rapidly. The time required to accomplish this is called the weapon's critical insertion time. If spontaneous fission were to occur when the supercritical mass was only partially assembled, the chain reaction would begin prematurely. Neutron losses through the void between the two subcritical masses (gun assembly) or the voids between not-fully-compressed fuel nuclei (implosion assembly) would sap the bomb of the number of fission events needed to attain the full design yield. Additionally, heat resulting from the fissions that do occur would work against the continued assembly of the supercritical mass, from thermal expansion of the fuel. This failure is called
predetonation In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series of these reactions. The specific nu ...
. The resulting explosion would be called a "fizzle" by bomb engineers and weapon users. Plutonium's high rate of spontaneous fission makes uranium fuel a necessity for gun-assembled bombs, with their much greater insertion time and much greater mass of fuel required (because of the lack of fuel compression). There is another source of free neutrons that can spoil a fission explosion. All uranium and plutonium nuclei have a decay mode that results in energetic
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s. If the fuel mass contains impurity elements of low atomic number (Z), these charged alphas can penetrate the coulomb barrier of these impurity nuclei and undergo a reaction that yields a free neutron. The rate of alpha emission of fissile nuclei is one to two million times that of spontaneous fission, so weapon engineers are careful to use fuel of high purity. Fission weapons used in the vicinity of other nuclear explosions must be protected from the intrusion of free neutrons from outside. Such shielding material will almost always be penetrated, however, if the outside neutron flux is intense enough. When a weapon misfires or fizzles because of the effects of other nuclear detonations, it is called
nuclear fratricide In relation to nuclear warfare, nuclear fratricide denotes the inadvertent destruction of nuclear warheads or their delivery systems by detonations from other warheads in the same attack. The blast, EMP and debris cloud may knock them off course, c ...
. For the implosion-assembled design, once the critical mass is assembled to maximum density, a burst of neutrons must be supplied to start the chain reaction. Early weapons used a modulated neutron generator codenamed " Urchin" inside the pit containing
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
-210 and
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
separated by a thin barrier. Implosion of the pit crushes the neutron generator, mixing the two metals, thereby allowing alpha particles from the polonium to interact with beryllium to produce free neutrons. In modern weapons, the
neutron generator Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deuteri ...
is a high-voltage vacuum tube containing a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
which bombards a deuterium/tritium-metal hydride target with deuterium and tritium
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s. The resulting small-scale fusion produces neutrons at a protected location outside the physics package, from which they penetrate the pit. This method allows better timing of the first fission events in the chain reaction, which optimally should occur at the point of maximum compression/supercriticality. Timing of the neutron injection is a more important parameter than the number of neutrons injected: the first generations of the chain reaction are vastly more effective due to the exponential function by which neutron multiplication evolves. The critical mass of an uncompressed sphere of bare metal is for uranium-235 and for delta-phase plutonium-239. In practical applications, the amount of material required for criticality is modified by shape, purity, density, and the proximity to neutron-reflecting material, all of which affect the escape or capture of neutrons. To avoid a premature chain reaction during handling, the fissile material in the weapon must be kept subcritical. It may consist of one or more components containing less than one uncompressed critical mass each. A thin hollow shell can have more than the bare-sphere critical mass, as can a cylinder, which can be arbitrarily long without ever reaching criticality. Another method of reducing criticality risk is to incorporate material with a large cross-section for neutron capture, such as boron (specifically 10B comprising 20% of natural boron). Naturally this neutron absorber must be removed before the weapon is detonated. This is easy for a gun-assembled bomb: the projectile mass simply shoves the absorber out of the void between the two subcritical masses by the force of its motion. The use of plutonium affects weapon design due to its high rate of alpha emission. This results in Pu metal spontaneously producing significant heat; a 5 kilogram mass produces 9.68 watts of thermal power. Such a piece would feel warm to the touch, which is no problem if that heat is dissipated promptly and not allowed to build up the temperature. But this ''is'' a problem inside a nuclear bomb. For this reason bombs using Pu fuel use aluminum parts to wick away the excess heat, and this complicates bomb design because Al plays no active role in the explosion processes. A ''tamper'' is an optional layer of dense material surrounding the fissile material. Due to its
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
it delays the thermal expansion of the fissioning fuel mass, keeping it supercritical for longer. Often the same layer serves both as tamper and as neutron reflector.


Gun-type assembly

Little Boy "Little Boy" was the type of atomic bomb dropped on the Japanese city of Hiroshima on 6 August 1945 during World War II, making it the first nuclear weapon used in warfare. The bomb was dropped by the Boeing B-29 Superfortress ''Enola Gay'' p ...
, the Hiroshima bomb, used of uranium with an average enrichment of around 80%, or of U-235, just about the bare-metal critical mass. (See
Little Boy "Little Boy" was the type of atomic bomb dropped on the Japanese city of Hiroshima on 6 August 1945 during World War II, making it the first nuclear weapon used in warfare. The bomb was dropped by the Boeing B-29 Superfortress ''Enola Gay'' p ...
article for a detailed drawing.) When assembled inside its tamper/reflector of
tungsten carbide Tungsten carbide (chemical formula: WC) is a chemical compound (specifically, a carbide) containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into ...
, the was more than twice critical mass. Before the detonation, the uranium-235 was formed into two sub-critical pieces, one of which was later fired down a gun barrel to join the other, starting the nuclear explosion. Analysis shows that less than 2% of the uranium mass underwent fission; the remainder, representing most of the entire wartime output of the giant Y-12 factories at Oak Ridge, scattered uselessly. The inefficiency was caused by the speed with which the uncompressed fissioning uranium expanded and became sub-critical by virtue of decreased density. Despite its inefficiency, this design, because of its shape, was adapted for use in small-diameter, cylindrical artillery shells (a gun-type warhead fired from the barrel of a much larger gun). Such warheads were deployed by the United States until 1992, accounting for a significant fraction of the U-235 in the arsenal, and were some of the first weapons dismantled to comply with treaties limiting warhead numbers. The rationale for this decision was undoubtedly a combination of the lower yield and grave safety issues associated with the gun-type design.


Implosion-type

For both the Trinity device and the
Fat Man "Fat Man" (also known as Mark III) is the codename for the type of nuclear bomb the United States detonated over the Japanese city of Nagasaki on 9 August 1945. It was the second of the only two nuclear weapons ever used in warfare, the fir ...
, the Nagasaki bomb, nearly identical plutonium fission through implosion designs were used. The Fat Man device specifically used , about in volume, of
Pu-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main ...
, which is only 41% of bare-sphere critical mass. (See
Fat Man "Fat Man" (also known as Mark III) is the codename for the type of nuclear bomb the United States detonated over the Japanese city of Nagasaki on 9 August 1945. It was the second of the only two nuclear weapons ever used in warfare, the fir ...
article for a detailed drawing.) Surrounded by a U-238 reflector/tamper, the Fat Man's pit was brought close to critical mass by the neutron-reflecting properties of the U-238. During detonation, criticality was achieved by implosion. The plutonium pit was squeezed to increase its density by simultaneous detonation, as with the "Trinity" test detonation three weeks earlier, of the conventional explosives placed uniformly around the pit. The explosives were detonated by multiple
exploding-bridgewire detonator The exploding-bridgewire detonator (EBW, also known as exploding wire detonator) is a type of detonator used to initiate the detonation reaction in explosive materials, similar to a blasting cap because it is fired using an electric current. EB ...
s. It is estimated that only about 20% of the plutonium underwent fission; the rest, about , was scattered. An implosion shock wave might be of such short duration that only part of the pit is compressed at any instant as the wave passes through it. To prevent this, a pusher shell may be needed. The pusher is located between the explosive lens and the tamper. It works by reflecting some of the shock wave backwards, thereby having the effect of lengthening its duration. It is made out of a low
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
– such as
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
,
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
, or an
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
of the two metals (aluminium is easier and safer to shape, and is two orders of magnitude cheaper; beryllium has high-neutron-reflective capability). Fat Man used an aluminium pusher. The series of
RaLa Experiment The RaLa Experiment, or RaLa, was a series of tests during and after the Manhattan Project designed to study the behavior of converging shock waves to achieve the spherical implosion necessary for compression of the plutonium pit of the nuclear we ...
tests of implosion-type fission weapon design concepts, carried out from July 1944 through February 1945 at the
Los Alamos Laboratory The Los Alamos Laboratory, also known as Project Y, was a secret laboratory established by the Manhattan Project and operated by the University of California during World War II. Its mission was to design and build the first atomic bombs. Ro ...
and a remote site 14.3 km (9 miles) east of it in Bayo Canyon, proved the practicality of the implosion design for a fission device, with the February 1945 tests positively determining its usability for the final Trinity/Fat Man plutonium implosion design. The key to Fat Man's greater efficiency was the inward momentum of the massive U-238 tamper. (The natural uranium tamper did not undergo fission from thermal neutrons, but did contribute perhaps 20% of the total yield from fission by fast neutrons). Once the chain reaction started in the plutonium, the momentum of the implosion had to be reversed before expansion could stop the fission. By holding everything together for a few hundred nanoseconds more, the efficiency was increased.


Plutonium pit

The core of an implosion weapon – the fissile material and any reflector or tamper bonded to it – is known as the ''pit''. Some weapons tested during the 1950s used pits made with
U-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists ...
alone, or in
composite Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
with
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, but all-plutonium pits are the smallest in diameter and have been the standard since the early 1960s. Casting and then machining plutonium is difficult not only because of its toxicity, but also because plutonium has many different metallic phases. As plutonium cools, changes in phase result in distortion and cracking. This distortion is normally overcome by alloying it with 30–35 mMol (0.9–1.0% by weight)
gallium Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in group 13 of the periodic table and is similar to the other metals of the group (aluminiu ...
, forming a plutonium-gallium alloy, which causes it to take up its delta phase over a wide temperature range. When cooling from molten it then has only a single phase change, from epsilon to delta, instead of the four changes it would otherwise pass through. Other
trivalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, or affinity of an ...
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s would also work, but gallium has a small neutron
absorption cross section Absorption cross section is a measure for the probability of an absorption process. More generally, the term cross section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering, electromagne ...
and helps protect the plutonium against
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
. A drawback is that gallium compounds are corrosive and so if the plutonium is recovered from dismantled weapons for conversion to
plutonium dioxide Plutonium(IV) oxide or (plutonia) is the chemical compound with the formula Pu O2. This high melting-point solid is a principal compound of plutonium. It can vary in color from yellow to olive green, depending on the particle size, temperature a ...
for power reactors, there is the difficulty of removing the gallium. Because plutonium is chemically reactive it is common to plate the completed pit with a thin layer of inert metal, which also reduces the toxic hazard.
The gadget Trinity was the code name of the first detonation of a nuclear weapon. It was conducted by the United States Army at 5:29 a.m. on July 16, 1945, as part of the Manhattan Project. The test was conducted in the Jornada del Muerto desert abo ...
used galvanic silver plating; afterwards,
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
deposited from
nickel tetracarbonyl Nickel carbonyl (IUPAC name: tetracarbonylnickel) is a nickel(0) organometallic compound with the formula Ni(CO)4. This colorless liquid is the principal carbonyl of nickel. It is an intermediate in the Mond process for producing very high-pur ...
vapors was used,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
was preferred for many years. Recent designs improve safety by plating pits with
vanadium Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pas ...
to make the pits more fire-resistant.


Levitated-pit implosion

The first improvement on the Fat Man design was to put an air space between the tamper and the pit to create a hammer-on-nail impact. The pit, supported on a hollow cone inside the tamper cavity, was said to be levitated. The three tests of
Operation Sandstone Operation Sandstone was a series of nuclear weapon tests in 1948. It was the third series of American tests, following Trinity in 1945 and Crossroads in 1946, and preceding Ranger. Like the Crossroads tests, the Sandstone tests were carried ou ...
, in 1948, used Fat Man designs with levitated pits. The largest yield was 49 kilotons, more than twice the yield of the unlevitated Fat Man. It was immediately clear that implosion was the best design for a fission weapon. Its only drawback seemed to be its diameter. Fat Man was wide vs for Little Boy. The Pu-239 pit of Fat Man was only in diameter, the size of a softball. The bulk of Fat Man's girth was the implosion mechanism, namely concentric layers of U-238, aluminium, and high explosives. The key to reducing that girth was the two-point implosion design.


Two-point linear implosion

In the two-point linear implosion, the nuclear fuel is cast into a solid shape and placed within the center of a cylinder of high explosive. Detonators are placed at either end of the explosive cylinder, and a plate-like insert, or ''shaper'', is placed in the explosive just inside the detonators. When the detonators are fired, the initial detonation is trapped between the shaper and the end of the cylinder, causing it to travel out to the edges of the shaper where it is diffracted around the edges into the main mass of explosive. This causes the detonation to form into a ring that proceeds inwards from the shaper. Due to the lack of a tamper or lenses to shape the progression, the detonation does not reach the pit in a spherical shape. To produce the desired spherical implosion, the fissile material itself is shaped to produce the same effect. Due to the physics of the shock wave propagation within the explosive mass, this requires the pit to be a
prolate spheroid A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circu ...
, that is, roughly egg shaped. The shock wave first reaches the pit at its tips, driving them inward and causing the mass to become spherical. The shock may also change plutonium from delta to alpha phase, increasing its density by 23%, but without the inward momentum of a true implosion. The lack of compression makes such designs inefficient, but the simplicity and small diameter make it suitable for use in artillery shells and atomic demolition munitions – ADMs – also known as backpack or
suitcase nuke A suitcase nuclear device (also suitcase nuke, suitcase bomb, backpack nuke, snuke, mini-nuke, and pocket nuke) is a tactical nuclear weapon that is portable enough that it could use a suitcase as its delivery method. Both the United States and ...
s; an example is the
W48 The W48 was an American nuclear artillery shell, capable of being fired from any standard howitzer. A tactical nuclear weapon, it was manufactured starting in 1963, and all units were retired in 1992. It was known as the XM454 AFAP (artillery ...
artillery shell, the smallest nuclear weapon ever built or deployed. All such low-yield battlefield weapons, whether gun-type U-235 designs or linear implosion Pu-239 designs, pay a high price in fissile material in order to achieve diameters between six and ten inches (15 and 25 cm).


List of US linear implosion weapons

Artillery *
W48 The W48 was an American nuclear artillery shell, capable of being fired from any standard howitzer. A tactical nuclear weapon, it was manufactured starting in 1963, and all units were retired in 1992. It was known as the XM454 AFAP (artillery ...
(1963–1992) *
W74 The W74 warhead, also known as XM517, was an American nuclear artillery shell that was cancelled before production. Responding to a 1969 United States Army request for a replacement for the W48 155 mm artillery shell, the Los Alamos Nationa ...
(cancelled) *
W75 The W74 warhead, also known as XM517, was an American nuclear artillery shell that was cancelled before production. Responding to a 1969 United States Army request for a replacement for the W48 155 mm artillery shell, the Los Alamos Nationa ...
(cancelled) *
W79 The W79 Artillery-Fired Atomic Projectile (AFAP), also known as the XM753 (Atomic RA) was an American nuclear artillery shell, capable of being fired from any NATO howitzer e.g. the M115 and M110 howitzer. Produced in two models, the enhanced ...
Mod 1 (1981–1992) *
W82 The W82 (also known as the XM785 shell) was a low-yield tactical nuclear warhead developed by the United States and designed to be used in a 155 mm artillery shell. It was conceived as a more flexible replacement for the W48, the previous gene ...
Mod 1 (cancelled)


Hollow-pit implosion

A more efficient implosion system uses a hollow pit. A hollow plutonium pit was the original plan for the 1945 Fat Man bomb, but there was not enough time to develop and test the implosion system for it. A simpler solid-pit design was considered more reliable, given the time constraints, but it required a heavy U-238 tamper, a thick aluminium pusher, and three tons of high explosives. After the war, interest in the hollow pit design was revived. Its obvious advantage is that a hollow shell of plutonium, shock-deformed and driven inward toward its empty center, would carry momentum into its violent assembly as a solid sphere. It would be self-tamping, requiring a smaller U-238 tamper, no aluminium pusher and less high explosive.


Fusion-boosted fission

The next step in miniaturization was to speed up the fissioning of the pit to reduce the minimum inertial confinement time. This would allow the efficient fission of the fuel with less mass in the form of tamper or the fuel itself. The key to achieving faster fission would be to introduce more neutrons, and among the many ways to do this, adding a fusion reaction was relatively easy in the case of a hollow pit. The easiest fusion reaction to achieve is found in a 50–50 mixture of tritium and deuterium. For
fusion power Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion, nuclear fusion reactions. In a fusion process, two lighter atomic nucleus, atomic nuclei combine to form a heavier nucleus, whi ...
experiments this mixture must be held at high temperatures for relatively lengthy times in order to have an efficient reaction. For explosive use, however, the goal is not to produce efficient fusion, but simply provide extra neutrons early in the process. Since a nuclear explosion is supercritical, any extra neutrons will be multiplied by the chain reaction, so even tiny quantities introduced early can have a large effect on the final outcome. For this reason, even the relatively low compression pressures and times (in fusion terms) found in the center of a hollow pit warhead are enough to create the desired effect. In the boosted design, the fusion fuel in gas form is pumped into the pit during arming. This will fuse into helium and release free neutrons soon after fission begins. The neutrons will start a large number of new chain reactions while the pit is still critical or nearly critical. Once the hollow pit is perfected, there is little reason not to boost; deuterium and tritium are easily produced in the small quantities needed, and the technical aspects are trivial. The concept of fusion-boosted fission was first tested on May 25, 1951, in the
Item Item may refer to: Organizations * ''Instituto del Tercer Mundo'' (ITeM), the Third World Institute * ITEM club, an economic forecasting group based in the United Kingdom Newspapers * ''The Item'', an American independent, morning newspaper ...
shot of
Operation Greenhouse Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons (''hydrogen bombs''). Conducted at the new Pacific Proving Grou ...
,
Eniwetok Enewetak Atoll (; also spelled Eniwetok Atoll or sometimes Eniewetok; mh, Ānewetak, , or , ; known to the Japanese as Brown Atoll or Brown Island; ja, ブラウン環礁) is a large coral atoll of 40 islands in the Pacific Ocean and with it ...
, yield 45.5 kilotons. Boosting reduces diameter in three ways, all the result of faster fission: * Since the compressed pit does not need to be held together as long, the massive U-238 tamper can be replaced by a light-weight beryllium shell (to reflect escaping neutrons back into the pit). The diameter is reduced. * The mass of the pit can be reduced by half, without reducing yield. Diameter is reduced again. * Since the mass of the metal being imploded (tamper plus pit) is reduced, a smaller charge of high explosive is needed, reducing diameter even further. The first device whose dimensions suggest employment of all these features (two-point, hollow-pit, fusion-boosted implosion) was the
Swan Swans are birds of the family (biology), family Anatidae within the genus ''Cygnus''. The swans' closest relatives include the goose, geese and ducks. Swans are grouped with the closely related geese in the subfamily Anserinae where they form t ...
device. It had a cylindrical shape with a diameter of and a length of . It was first tested standalone and then as the primary of a two-stage thermonuclear device during
Operation Redwing Operation Redwing was a United States series of 17 nuclear test detonations from May to July 1956. They were conducted at Bikini and Enewetak atolls by Joint Task Force 7 (JTF7).Blumenson, Martin and Hugh D. Hexamer (1956). ''A History of Op ...
. It was weaponized as the
Robin primary The Robin was the common design nuclear fission bomb core for several Cold War designs for American nuclear and thermonuclear bomb, thermonuclear weapons, according to researcher Chuck Hansen. Nuclear weapon design#Two-stage thermonuclear weapons, ...
and became the first off-the-shelf, multi-use primary, and the prototype for all that followed. After the success of Swan, seemed to become the standard diameter of boosted single-stage devices tested during the 1950s. Length was usually twice the diameter, but one such device, which became the
W54 The W54 (also known as the Mark 54 or B54) was a tactical nuclear warhead developed by the United States in the late 1950s. The weapon is notable for being the smallest nuclear weapon in both weight and yield to have entered US service. It was ...
warhead, was closer to a sphere, only long. One of the applications of the W54 was the Davy Crockett XM-388 recoilless rifle projectile. It had a dimension of just , and is shown here in comparison to its Fat Man predecessor (). Another benefit of boosting, in addition to making weapons smaller, lighter, and with less fissile material for a given yield, is that it renders weapons immune to predetonation. It was discovered in the mid-1950s that plutonium pits would be particularly susceptible to partial
predetonation In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series of these reactions. The specific nu ...
if exposed to the intense radiation of a nearby nuclear explosion (electronics might also be damaged, but this was a separate problem). RI was a particular problem before effective
early warning radar An early-warning radar is any radar system used primarily for the long-range detection of its targets, i.e., allowing defences to be alerted as ''early'' as possible before the intruder reaches its target, giving the air defences the maximum t ...
systems because a first strike attack might make retaliatory weapons useless. Boosting reduces the amount of plutonium needed in a weapon to below the quantity which would be vulnerable to this effect.


Two-stage thermonuclear

Pure fission or fusion-boosted fission weapons can be made to yield hundreds of kilotons, at great expense in fissile material and tritium, but by far the most efficient way to increase nuclear weapon yield beyond ten or so kilotons is to add a second independent stage, called a secondary. In the 1940s, bomb designers at Los Alamos thought the secondary would be a canister of deuterium in liquefied or hydride form. The fusion reaction would be D-D, harder to achieve than D-T, but more affordable. A fission bomb at one end would shock-compress and heat the near end, and fusion would propagate through the canister to the far end. Mathematical simulations showed it would not work, even with large amounts of expensive tritium added. The entire fusion fuel canister would need to be enveloped by fission energy, to both compress and heat it, as with the booster charge in a boosted primary. The design breakthrough came in January 1951, when
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care fo ...
and
Stanislaw Ulam Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapon ...
invented radiation implosion – for nearly three decades known publicly only as the
Teller-Ulam A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
H-bomb secret. The concept of radiation implosion was first tested on May 9, 1951, in the George shot of
Operation Greenhouse Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons (''hydrogen bombs''). Conducted at the new Pacific Proving Grou ...
, Eniwetok, yield 225 kilotons. The first full test was on November 1, 1952, the
Mike Mike may refer to: Animals * Mike (cat), cat and guardian of the British Museum * Mike the Headless Chicken, chicken that lived for 18 months after his head had been cut off * Mike (chimpanzee), a chimpanzee featured in several books and docume ...
shot of
Operation Ivy Operation Ivy was the eighth series of American nuclear tests, coming after '' Tumbler-Snapper'' and before '' Upshot–Knothole''. The two explosions were staged in late 1952 at Enewetak Atoll in the Pacific Proving Ground in the Marshall Is ...
, Eniwetok, yield 10.4 megatons. In radiation implosion, the burst of X-ray energy coming from an exploding primary is captured and contained within an opaque-walled radiation channel which surrounds the nuclear energy components of the secondary. The radiation quickly turns the plastic foam that had been filling the channel into a plasma which is mostly transparent to X-rays, and the radiation is absorbed in the outermost layers of the pusher/tamper surrounding the secondary, which ablates and applies a massive force (much like an inside out rocket engine) causing the fusion fuel capsule to implode much like the pit of the primary. As the secondary implodes a fissile "spark plug" at its center ignites and provides neutrons and heat which enable the lithium deuteride fusion fuel to produce tritium and ignite as well. The fission and fusion chain reactions exchange neutrons with each other and boost the efficiency of both reactions. The greater implosive force, enhanced efficiency of the fissile "spark plug" due to boosting via fusion neutrons, and the fusion explosion itself provide significantly greater explosive yield from the secondary despite often not being much larger than the primary. For example, for the Redwing Mohawk test on July 3, 1956, a secondary called the Flute was attached to the Swan primary. The Flute was in diameter and long, about the size of the Swan. But it weighed ten times as much and yielded 24 times as much energy (355 kilotons, vs 15 kilotons). Equally important, the active ingredients in the Flute probably cost no more than those in the Swan. Most of the fission came from cheap U-238, and the tritium was manufactured in place during the explosion. Only the spark plug at the axis of the secondary needed to be fissile. A spherical secondary can achieve higher implosion densities than a cylindrical secondary, because spherical implosion pushes in from all directions toward the same spot. However, in warheads yielding more than one megaton, the diameter of a spherical secondary would be too large for most applications. A cylindrical secondary is necessary in such cases. The small, cone-shaped re-entry vehicles in multiple-warhead ballistic missiles after 1970 tended to have warheads with spherical secondaries, and yields of a few hundred kilotons. As with boosting, the advantages of the two-stage thermonuclear design are so great that there is little incentive not to use it, once a nation has mastered the technology. In engineering terms, radiation implosion allows for the exploitation of several known features of nuclear bomb materials which heretofore had eluded practical application. For example: * The optimal way to store deuterium in a reasonably dense state is to chemically bond it with lithium, as lithium deuteride. But the lithium-6 isotope is also the raw material for tritium production, and an exploding bomb is a nuclear reactor. Radiation implosion will hold everything together long enough to permit the complete conversion of lithium-6 into tritium, while the bomb explodes. So the bonding agent for deuterium permits use of the D-T fusion reaction without any pre-manufactured tritium being stored in the secondary. The tritium production constraint disappears. * For the secondary to be imploded by the hot, radiation-induced plasma surrounding it, it must remain cool for the first microsecond, i.e., it must be encased in a massive radiation (heat) shield. The shield's massiveness allows it to double as a tamper, adding momentum and duration to the implosion. No material is better suited for both of these jobs than ordinary, cheap uranium-238, which also happens to undergo fission when struck by the neutrons produced by D-T fusion. This casing, called the pusher, thus has three jobs: to keep the secondary cool; to hold it, inertially, in a highly compressed state; and, finally, to serve as the chief energy source for the entire bomb. The consumable pusher makes the bomb more a uranium fission bomb than a hydrogen fusion bomb. Insiders never used the term "hydrogen bomb". * Finally, the heat for fusion ignition comes not from the primary but from a second fission bomb called the spark plug, embedded in the heart of the secondary. The implosion of the secondary implodes this spark plug, detonating it and igniting fusion in the material around it, but the spark plug then continues to fission in the neutron-rich environment until it is fully consumed, adding significantly to the yield. In the ensuing fifty years, nobody has come up with a more efficient way to build a nuclear bomb. It is the design of choice for the United States, Russia, the United Kingdom, China, and France, the five thermonuclear powers. On 3 September 2017 North Korea carried out what it reported as its first "two-stage thermo-nuclear weapon" test. According to Dr. Theodore Taylor, after reviewing leaked
photographs A photograph (also known as a photo, image, or picture) is an image created by light falling on a photosensitive surface, usually photographic film or an electronic image sensor, such as a CCD or a CMOS chip. Most photographs are now created ...
of disassembled weapons components taken before 1986, Israel possessed boosted weapons and would require supercomputers of that era to advance further toward full two-stage weapons in the megaton range without nuclear test detonations. The other nuclear-armed nations, India and Pakistan, probably have single-stage weapons, possibly boosted.


Interstage

In a two-stage thermonuclear weapon the energy from the primary impacts the secondary. An essential energy transfer modulator called the interstage, between the primary and the secondary, protects the secondary's fusion fuel from heating too quickly, which could cause it to explode in a conventional (and small) heat explosion before the fusion and fission reactions get a chance to start. There is very little information in the open literature about the mechanism of the interstage. Its first mention in a U.S. government document formally released to the public appears to be a caption in a graphic promoting the Reliable Replacement Warhead Program in 2007. If built, this new design would replace "toxic, brittle material" and "expensive 'special' material" in the interstage. This statement suggests the interstage may contain beryllium to moderate the flux of neutrons from the primary, and perhaps something to absorb and re-radiate the x-rays in a particular manner. There is also some speculation that this interstage material, which may be code-named
Fogbank Fogbank is a code name given to a material used in the W76, W78 and W88 nuclear warheads that are part of the United States nuclear arsenal. Fogbank's precise nature is classified; in the words of former Oak Ridge general manager Dennis Ruddy, ...
, might be an
aerogel Aerogels are a class of synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid with extremely low ...
, possibly doped with beryllium and/or other substances. The interstage and the secondary are encased together inside a stainless steel membrane to form the canned subassembly (CSA), an arrangement which has never been depicted in any open-source drawing. The most detailed illustration of an interstage shows a British thermonuclear weapon with a cluster of items between its primary and a cylindrical secondary. They are labeled "end-cap and neutron focus lens", "reflector/neutron gun carriage", and "reflector wrap". The origin of the drawing, posted on the internet by Greenpeace, is uncertain, and there is no accompanying explanation.


Specific designs

While every nuclear weapon design falls into one of the above categories, specific designs have occasionally become the subject of news accounts and public discussion, often with incorrect descriptions about how they work and what they do. Examples:


Alarm Clock/Sloika

The first effort to exploit the symbiotic relationship between fission and fusion was a 1940s design that mixed fission and fusion fuel in alternating thin layers. As a single-stage device, it would have been a cumbersome application of boosted fission. It first became practical when incorporated into the secondary of a two-stage thermonuclear weapon. The U.S. name, Alarm Clock, came from Teller: he called it that because it might "wake up the world" to the possibility of the potential of the Super. The Russian name for the same design was more descriptive: Sloika (russian: Слойка), a layered pastry cake. A single-stage Soviet Sloika was tested on August 12, 1953. No single-stage U.S. version was tested, but the
Union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
shot of
Operation Castle Operation Castle was a United States series of high-yield (high-energy) nuclear tests by Joint Task Force 7 (JTF-7) at Bikini Atoll beginning in March 1954. It followed ''Operation Upshot–Knothole'' and preceded ''Operation Teapot''. Condu ...
, April 26, 1954, was a two-stage thermonuclear device code-named Alarm Clock. Its yield, at
Bikini A bikini is a two-piece swimsuit primarily worn by women that features two triangles of fabric on top that cover the breasts, and two triangles of fabric on the bottom: the front covering the pelvis but exposing the navel, and the back coveri ...
, was 6.9 megatons. Because the Soviet Sloika test used dry lithium-6 deuteride eight months before the first U.S. test to use it (Castle Bravo, March 1, 1954), it was sometimes claimed that the USSR won the H-bomb race, even though the United States tested and developed the first hydrogen bomb: the Ivy Mike H-bomb test. The 1952 U.S. Ivy Mike test used cryogenically cooled liquid deuterium as the fusion fuel in the secondary, and employed the D-D fusion reaction. However, the first Soviet test to use a radiation-imploded secondary, the essential feature of a true H-bomb, was on November 23, 1955, three years after Ivy Mike. In fact, real work on the implosion scheme in the Soviet Union only commenced in the very early part of 1953, several months after the successful testing of Sloika.


Clean bombs

On March 1, 1954, the largest-ever U.S. nuclear test explosion, the 15-megaton
Bravo Bravo(s) or The Bravo(s) may refer to: Arts and entertainment Music Groups and labels *Bravo (band), a Russian rock band * Bravo (Spanish group), represented Spain at Eurovision 1984 *Bravo Music, an American concert band music publishing company ...
shot of Operation Castle at Bikini Atoll, delivered a promptly lethal dose of fission-product fallout to more than of Pacific Ocean surface. Radiation injuries to Marshall Islanders and Japanese fishermen made that fact public and revealed the role of fission in hydrogen bombs. In response to the public alarm over fallout, an effort was made to design a clean multi-megaton weapon, relying almost entirely on fusion. The energy produced by the fissioning of unenriched natural uranium, when used as the tamper material in the secondary and subsequent stages in the Teller-Ulam design, can far exceed the energy released by fusion, as was the case in the
Castle Bravo Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of ''Operation Castle''. Detonated on March 1, 1954, the device was the most powerful ...
test. Replacing the
fissionable In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typi ...
material in the tamper with another material is essential to producing a "clean" bomb. In such a device, the tamper no longer contributes energy, so for any given weight, a clean bomb will have less yield. The earliest known incidence of a three-stage device being tested, with the third stage, called the tertiary, being ignited by the secondary, was May 27, 1956 in the Bassoon device. This device was tested in the Zuni shot of
Operation Redwing Operation Redwing was a United States series of 17 nuclear test detonations from May to July 1956. They were conducted at Bikini and Enewetak atolls by Joint Task Force 7 (JTF7).Blumenson, Martin and Hugh D. Hexamer (1956). ''A History of Op ...
. This shot used non-fissionable tampers; an inert substitute material such as tungsten or lead was used. Its yield was 3.5 megatons, 85% fusion and only 15% fission. The public records for devices that produced the highest proportion of their yield via fusion reactions are the
peaceful nuclear explosion Peaceful nuclear explosions (PNEs) are nuclear explosions conducted for non-military purposes. Proposed uses include excavation for the building of canals and harbours, electrical generation, the use of nuclear explosions to drive spacecraft, and a ...
s of the 1970s. Others include the 50 megaton
Tsar Bomba The Tsar Bomba () ( code name: ''Ivan'' or ''Vanya''), also known by the alphanumerical designation "AN602", was a thermonuclear aerial bomb, and the most powerful nuclear weapon ever created and tested. Overall, the Soviet physicist Andrei Sa ...
at 97% fusion, the 9.3 megaton Hardtack Poplar test at 95%, and the 4.5 megaton Redwing Navajo test at 95% fusion. The most ambitious peaceful application of nuclear explosions was pursued by the USSR with the aim of creating a 112 km long canal between the Pechora river basin and the Kama river basin, about half of which was to be constructed through a series of underground nuclear explosions. It was reported that about 250 nuclear devices might be used to get the final goal. The ''Taiga'' test was to demonstrate the feasibility of the project. Three of these "clean" devices of 15 kiloton yield each were placed in separate boreholes spaced about 165 m apart at depths of 127 m. They were simultaneously detonated on March 23, 1971, catapulting radioactive plume into the air that was carried eastward by wind. The resulting trench was around 700 m long and 340 m wide, with an unimpressive depth of just 10–15m. Despite their "clean" nature, the area still exhibits a noticeably higher (albeit mostly harmless) concentration of fission products, the intense neutron bombardment of the soil, the device itself and the support structures also activated their stable elements to create a significant amount of man-made radioactive elements like 60Co. The overall danger posed by the concentration of radioactive elements present at the site created by these three devices is still negligible, but a larger scale project as was envisioned would have had significant consequences both from the fallout of radioactive plume and the radioactive elements created by the neutron bombardment. On July 19, 1956, AEC Chairman Lewis Strauss said that the Redwing Zuni shot clean bomb test "produced much of importance ... from a humanitarian aspect." However, less than two days after this announcement, the dirty version of Bassoon, called Bassoon Prime, with a
uranium-238 Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it ...
tamper in place, was tested on a barge off the coast of Bikini Atoll as the Redwing Tewa shot. The Bassoon Prime produced a 5-megaton yield, of which 87% came from fission. Data obtained from this test, and others, culminated in the eventual deployment of the highest yielding US nuclear weapon known, and the highest yield-to-weight weapon ever made, a three-stage thermonuclear weapon with a maximum "dirty" yield of 25 megatons, designated as the
B41 nuclear bomb The B-41 (also known as Mk-41) was a thermonuclear weapon deployed by the United States Strategic Air Command in the early 1960s. It was the most powerful nuclear bomb ever developed by the United States, with a maximum yield of . The B-41 was ...
, which was to be carried by U.S. Air Force bombers until it was decommissioned; this weapon was never fully tested.


Third generation

First and second generation nuclear weapons release energy as omnidirectional blasts. Third generation nuclear weapons are experimental special effect warheads and devices that can release energy in a directed manner, some of which were tested during the
Cold War The Cold War is a term commonly used to refer to a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term '' cold war'' is used because the ...
but were never deployed. These include: * Project Prometheus, also known as "Nuclear Shotgun", which would have used a nuclear explosion to accelerate kinetic penetrators against ICBMs. *
Project Excalibur Project Excalibur was a Lawrence Livermore National Laboratory (LLNL) Cold Warera research program to develop an X-ray laser system as a ballistic missile defense (BMD) for the United States. The concept involved packing large numbers of expendab ...
, a nuclear-pumped X-ray laser to destroy ballistic missiles. *
Nuclear shaped charge Nuclear shaped charges refers to nuclear weapons that focus the energy of their explosion into certain directions, as opposed to a spherical explosion. Edward Teller referred to such concepts as third-generation weapons, the first generation being ...
s that focus their energy in particular directions. * Project Orion explored the use of nuclear explosives for rocket propulsion.


Fourth generation

Newer 4th-generation nuclear weapons designs including
pure fusion weapon A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission "primary" explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon ...
s and
antimatter-catalyzed nuclear pulse propulsion Antimatter-catalyzed nuclear pulse propulsion (also antiproton-catalyzed nuclear pulse propulsion) is a variation of nuclear pulse propulsion based upon the injection of antimatter into a mass of nuclear fuel to initiate a nuclear chain reaction f ...
-like devices, are being studied by the five largest nuclear weapon states.


Cobalt bombs

A doomsday bomb, made popular by
Nevil Shute Nevil Shute Norway (17 January 189912 January 1960) was an English novelist and aeronautical engineer who spent his later years in Australia. He used his full name in his engineering career and Nevil Shute as his pen name, in order to protect h ...
's 1957
novel A novel is a relatively long work of narrative fiction, typically written in prose and published as a book. The present English word for a long work of prose fiction derives from the for "new", "news", or "short story of something new", itsel ...
, and subsequent 1959 movie, '' On the Beach'', the cobalt bomb is a hydrogen bomb with a jacket of cobalt. The neutron-activated cobalt would have maximized the environmental damage from radioactive fallout. These bombs were popularized in the 1964 film '' Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb''; the material added to the bombs is referred to in the film as 'cobalt-thorium G'. Such "salted" weapons were investigated by U.S Department of Defense. Fission products are as deadly as neutron-activated cobalt. The standard high-fission thermonuclear weapon is automatically a weapon of radiological warfare, as dirty as a cobalt bomb. Initially, gamma radiation from the fission products of an equivalent size fission-fusion-fission bomb are much more intense than
Co-60 Cobalt-60 (60Co) is a synthetic isotope, synthetic radioactive Isotopes of cobalt, isotope of cobalt with a half-life of 5.2713 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activat ...
: 15,000 times more intense at 1 hour; 35 times more intense at 1 week; 5 times more intense at 1 month; and about equal at 6 months. Thereafter fission drops off rapidly so that Co-60 fallout is 8 times more intense than fission at 1 year and 150 times more intense at 5 years. The very long-lived isotopes produced by fission would overtake the 60Co again after about 75 years. The triple "taiga" nuclear
salvo A salvo is the simultaneous discharge of artillery or firearms including the firing of guns either to hit a target or to perform a salute. As a tactic in warfare, the intent is to cripple an enemy in one blow and prevent them from fighting b ...
test, as part of the preliminary March 1971
Pechora–Kama Canal The Pechora–Kama Canal (russian: Канал Печора-Кама), or sometimes the Kama–Pechora Canal, was a proposed canal intended to link up the basin of the Pechora River in the north of European Russia with the basin of the Kama, a trib ...
project, produced a small amount of fission products and therefore a comparatively large amount of case material activated products are responsible for most of the residual activity at the site today, namely Co-60. As of 2011, fusion generated neutron activation was responsible for about half of the gamma dose at the test site. That dose is too small to cause deleterious effects, and normal green vegetation exists all around the lake that was formed.


Arbitrarily large multi-staged devices

The idea of a device which has an arbitrarily large number of Teller-Ulam stages, with each driving a larger radiation-driven implosion than the preceding stage, is frequently suggested, but technically disputed.''How much large can bombs be made through staging? One often finds claims on the public Internet that multiple stages could be combined one after the other, in an arbitrary large number, and that therefore the in-principle yield of a thermonuclear could be increased without limit. Such authors usually conclude this argument with the wise statement that nuclear weapons were made already so destructive, that no one could possibly think of increasing their yield even further, or that their military use would be pointless...The idea of adding four, ten, a hundred stages, in a disciplined and well orderly way, driving a larger radiation-driven implosion after the other sounds much more like a sheer nonsense than an in-principle design for an Armageddon-class weapon. It should be added that, to the best knowledge of this author, statements about the actual yield of the most powerful weapons in the U.S. nuclear arsenal, either deployed or envisaged at some stage, were declassified, but no detailed hints at triple staging were released in the open from official sources. Also, there are (convincing) well-known sketches and some reasonable-looking calculations in the open literature about two-stage weapons, but no similarly accurate descriptions of true three stages concepts.'' . There are "well-known sketches and some reasonable-looking calculations in the open literature about two-stage weapons, but no similarly accurate descriptions of true three stage concepts." According to George Lemmer's 1967 ''Air Force and Strategic Deterrence 1951–1960'' paper, in 1957, LANL stated that a 1,000-megaton warhead could be built. Apparently there were three of these US designs analyzed in the gigaton (1,000-megaton) range; LLNL's GNOMON and SUNDIAL – objects that cast shadows – and LANL's "TAV". SUNDIAL attempting to have a 10 Gt yield, while the Gnomon and TAV designs attempted to produce a yield of 1 Gt. A
freedom of information Freedom of information is freedom of a person or people to publish and consume information. Access to information is the ability for an individual to seek, receive and impart information effectively. This sometimes includes "scientific, indigeno ...
request was filed (FOIA 13-00049-K) for information on the three above US designs. The request was denied under statutory exemptions relating to classified material; the denial was appealed, but the request was finally denied again in April 2016. Following the concern caused by the estimated gigaton scale of the 1994
Comet Shoemaker-Levy 9 A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
impacts on the planet
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, in a 1995 meeting at
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
(LLNL),
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care fo ...
proposed to a collective of U.S. and Russian ex-
Cold War The Cold War is a term commonly used to refer to a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term '' cold war'' is used because the ...
weapons designers that they collaborate on designing a 1000-megaton nuclear explosive device for diverting extinction-class asteroids (10+ km in diameter), which would be employed in the event that one of these asteroids were on an impact trajectory with Earth. There have also been some calculations made in 1979 by
Lowell Wood Lowell Lincoln Wood Jr. (born 1941) is an American astrophysicist who has been involved with the Strategic Defense Initiative and with geoengineering studies. He has been affiliated with Lawrence Livermore National Laboratory and the Hoover In ...
, Teller's
protégé Mentorship is the influence, guidance, or direction given by a mentor. A mentor is someone who teaches or gives help and advice to a less experienced and often younger person. In an organizational setting, a mentor influences the personal and p ...
, that Teller's initially-unworkable "classical Super" design, analogous to igniting a
candlestick A candlestick is a device used to hold a candle in place. Candlesticks have a cup or a spike ("pricket") or both to keep the candle in place. Candlesticks are less frequently called "candleholders". Before the proliferation of electricity, candl ...
of deuterium fuel, could potentially achieve ignition reliably were it touched off by a sufficiently-large Teller-Ulam device, rather than the
gun-type fission weapon Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is sometim ...
used in the original design.


Neutron bombs

A neutron bomb, technically referred to as an enhanced radiation weapon (ERW), is a type of tactical nuclear weapon designed specifically to release a large portion of its energy as energetic neutron radiation. This contrasts with standard thermonuclear weapons, which are designed to capture this intense neutron radiation to increase its overall explosive yield. In terms of yield, ERWs typically produce about one-tenth that of a fission-type atomic weapon. Even with their significantly lower explosive power, ERWs are still capable of much greater destruction than any conventional bomb. Meanwhile, relative to other nuclear weapons, damage is more focused on biological material than on material infrastructure (though extreme blast and heat effects are not eliminated). ERWs are more accurately described as suppressed yield weapons. When the yield of a nuclear weapon is less than one kiloton, its lethal radius from blast, , is less than that from its neutron radiation. However, the blast is more than potent enough to destroy most structures, which are less resistant to blast effects than even unprotected human beings. Blast pressures of upwards of 20 PSI are survivable, whereas most buildings will collapse with a pressure of only 5 PSI. Commonly misconceived as a weapon designed to kill populations and leave infrastructure intact, these bombs (as mentioned above) are still very capable of leveling buildings over a large radius. The intent of their design was to kill tank crews – tanks giving excellent protection against blast and heat, surviving (relatively) very close to a detonation. Given the Soviets' vast tank forces during the Cold War, this was the perfect weapon to counter them. The neutron radiation could instantly incapacitate a tank crew out to roughly the same distance that the heat and blast would incapacitate an unprotected human (depending on design). The tank chassis would also be rendered highly radioactive, temporarily preventing its re-use by a fresh crew. Neutron weapons were also intended for use in other applications, however. For example, they are effective in anti-nuclear defenses – the neutron flux being capable of neutralising an incoming warhead at a greater range than heat or blast. Nuclear warheads are very resistant to physical damage, but are very difficult to harden against extreme neutron flux. ERWs were two-stage thermonuclears with all non-essential uranium removed to minimize fission yield. Fusion provided the neutrons. Developed in the 1950s, they were first deployed in the 1970s, by U.S. forces in Europe. The last ones were retired in the 1990s. A neutron bomb is only feasible if the yield is sufficiently high that efficient fusion stage ignition is possible, and if the yield is low enough that the case thickness will not absorb too many neutrons. This means that neutron bombs have a yield range of 1–10 kilotons, with fission proportion varying from 50% at 1-kiloton to 25% at 10-kilotons (all of which comes from the primary stage). The neutron output per kiloton is then 10–15 times greater than for a pure fission implosion weapon or for a strategic warhead like a
W87 The W87 is an American thermonuclear missile warhead formerly deployed on the LGM-118A Peacekeeper ("MX") ICBM. 50 MX missiles were built, each carrying up to 10 W87 warheads in multiple independently targetable reentry vehicles (MIRV), and were ...
or
W88 The W88 is an American thermonuclear warhead, with an estimated yield of , and is small enough to fit on MIRVed missiles. The W88 was designed at the Los Alamos National Laboratory in the 1970s. In 1999, the director of Los Alamos who had pres ...
.


Weapon design laboratories

All the nuclear weapon design innovations discussed in this article originated from the following three labs in the manner described. Other nuclear weapon design labs in other countries duplicated those design innovations independently, reverse-engineered them from fallout analysis, or acquired them by espionage.


Lawrence Berkeley

The first systematic exploration of nuclear weapon design concepts took place in mid-1942 at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
. Important early discoveries had been made at the adjacent
Lawrence Berkeley Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
, such as the 1940 cyclotron-made production and isolation of plutonium. A Berkeley professor,
J. Robert Oppenheimer J. Robert Oppenheimer (; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is often ...
, had just been hired to run the nation's secret bomb design effort. His first act was to convene the 1942 summer conference. By the time he moved his operation to the new secret town of Los Alamos, New Mexico, in the spring of 1943, the accumulated wisdom on nuclear weapon design consisted of five lectures by Berkeley professor
Robert Serber Robert Serber (March 14, 1909 – June 1, 1997) was an American physicist who participated in the Manhattan Project. Serber's lectures explaining the basic principles and goals of the project were printed and supplied to all incoming scientific st ...
, transcribed and distributed as the
Los Alamos Primer ''The Los Alamos Primer'' was a printed version of the first five lectures on the principles of nuclear weapons given to new arrivals at the top-secret Los Alamos National Laboratory, Los Alamos laboratory during the Manhattan Project. They wer ...
. The Primer addressed fission energy,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
production and
capture Capture may refer to: *Asteroid capture, a phenomenon in which an asteroid enters a stable orbit around another body *Capture, a software for lighting design, documentation and visualisation *"Capture" a song by Simon Townshend *Capture (band), an ...
,
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series of these reactions. The specific nu ...
s,
critical mass In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fissi ...
, tampers, predetonation, and three methods of assembling a bomb: gun assembly, implosion, and "autocatalytic methods", the one approach that turned out to be a dead end.


Los Alamos

At Los Alamos, it was found in April 1944 by
Emilio Segrè Emilio Gino Segrè (1 February 1905 – 22 April 1989) was an Italian-American physicist and Nobel laureate, who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was awarded the Nobel ...
that the proposed Thin Man Gun assembly type bomb would not work for plutonium because of predetonation problems caused by
Pu-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
impurities. So Fat Man, the implosion-type bomb, was given high priority as the only option for plutonium. The Berkeley discussions had generated theoretical estimates of critical mass, but nothing precise. The main wartime job at Los Alamos was the experimental determination of critical mass, which had to wait until sufficient amounts of fissile material arrived from the production plants: uranium from
Oak Ridge, Tennessee Oak Ridge is a city in Anderson and Roane counties in the eastern part of the U.S. state of Tennessee, about west of downtown Knoxville. Oak Ridge's population was 31,402 at the 2020 census. It is part of the Knoxville Metropolitan Area. Oak ...
, and plutonium from the
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. The site has been known by many names, including SiteW a ...
in Washington. In 1945, using the results of critical mass experiments, Los Alamos technicians fabricated and assembled components for four bombs: the ''
Trinity The Christian doctrine of the Trinity (, from 'threefold') is the central dogma concerning the nature of God in most Christian churches, which defines one God existing in three coequal, coeternal, consubstantial divine persons: God the F ...
''
Gadget A gadget is a mechanical device or any ingenious article. Gadgets are sometimes referred to as '' gizmos''. History The etymology of the word is disputed. The word first appears as reference to an 18th-century tool in glassmaking that was develo ...
, Little Boy, Fat Man, and an unused spare Fat Man. After the war, those who could, including Oppenheimer, returned to university teaching positions. Those who remained worked on levitated and hollow pits and conducted weapon effects tests such as
Crossroads Crossroads, crossroad, cross road or similar may refer to: * Crossroads (junction), where four roads meet Film and television Films * ''Crossroads'' (1928 film), a 1928 Japanese film by Teinosuke Kinugasa * ''Cross Roads'' (film), a 1930 Brit ...
Able and Baker at
Bikini Atoll Bikini Atoll ( or ; Marshallese: , , meaning "coconut place"), sometimes known as Eschscholtz Atoll between the 1800s and 1946 is a coral reef in the Marshall Islands consisting of 23 islands surrounding a central lagoon. After the Second ...
in 1946. All of the essential ideas for incorporating fusion into nuclear weapons originated at Los Alamos between 1946 and 1952. After the
Teller-Ulam A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
radiation implosion breakthrough of 1951, the technical implications and possibilities were fully explored, but ideas not directly relevant to making the largest possible bombs for long-range Air Force bombers were shelved. Because of Oppenheimer's initial position in the H-bomb debate, in opposition to large thermonuclear weapons, and the assumption that he still had influence over Los Alamos despite his departure, political allies of
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care fo ...
decided he needed his own laboratory in order to pursue H-bombs. By the time it was opened in 1952, in Livermore, California, Los Alamos had finished the job Livermore was designed to do.


Lawrence Livermore

With its original mission no longer available, the Livermore lab tried radical new designs that failed. Its first three nuclear tests were
fizzles The "fizzles" are eight short prose pieces written by Samuel Beckett: * Fizzle 1 e is barehead* Fizzle 2 orn came always* Fizzle 3 ''Afar a Bird'' * Fizzle 4 gave up before birthref name='FIZZLE4'/> * Fizzle 5 losed place* Fizzle 6 ld eart ...
: in 1953, two single-stage fission devices with uranium hydride pits, and in 1954, a two-stage thermonuclear device in which the secondary heated up prematurely, too fast for radiation implosion to work properly. Shifting gears, Livermore settled for taking ideas Los Alamos had shelved and developing them for the Army and Navy. This led Livermore to specialize in small-diameter tactical weapons, particularly ones using two-point implosion systems, such as the Swan. Small-diameter tactical weapons became primaries for small-diameter secondaries. Around 1960, when the superpower arms race became a ballistic missile race, Livermore warheads were more useful than the large, heavy Los Alamos warheads. Los Alamos warheads were used on the first
intermediate-range ballistic missile An intermediate-range ballistic missile (IRBM) is a ballistic missile with a range of 3,000–5,500 km (1,864–3,418 miles), between a medium-range ballistic missile (MRBM) and an intercontinental ballistic missile (ICBM). Classifying ba ...
s, IRBMs, but smaller Livermore warheads were used on the first
intercontinental ballistic missile An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than , primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads). Conventional, chemical, and biological weapons c ...
s, ICBMs, and
submarine-launched ballistic missile A submarine-launched ballistic missile (SLBM) is a ballistic missile capable of being launched from submarines. Modern variants usually deliver multiple independently targetable reentry vehicles (MIRVs), each of which carries a nuclear warhead ...
s, SLBMs, as well as on the first multiple warhead systems on such missiles. In 1957 and 1958, both labs built and tested as many designs as possible, in anticipation that a planned 1958 test ban might become permanent. By the time testing resumed in 1961 the two labs had become duplicates of each other, and design jobs were assigned more on workload considerations than lab specialty. Some designs were horse-traded. For example, the
W38 The W38 was an American thermonuclear warhead used in the early to mid-1960s as a warhead for Atlas E and F, and LGM-25 Titan I ICBMs. It was first built in 1961 and was in service from 1961 to 1965. 70 were deployed on Titan I missiles and 110 o ...
warhead for the
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
I missile started out as a Livermore project, was given to Los Alamos when it became the
Atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geographic ...
missile warhead, and in 1959 was given back to Livermore, in trade for the
W54 The W54 (also known as the Mark 54 or B54) was a tactical nuclear warhead developed by the United States in the late 1950s. The weapon is notable for being the smallest nuclear weapon in both weight and yield to have entered US service. It was ...
Davy Crockett David Crockett (August 17, 1786 – March 6, 1836) was an American folk hero, frontiersman, soldier, and politician. He is often referred to in popular culture as the "King of the Wild Frontier". He represented Tennessee in the U.S. House of Re ...
warhead, which went from Livermore to Los Alamos. Warhead designs after 1960 took on the character of model changes, with every new missile getting a new warhead for marketing reasons. The chief substantive change involved packing more fissile uranium-235 into the secondary, as it became available with continued
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
and the dismantlement of the large high-yield bombs. Starting with the
Nova A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramati ...
facility at Livermore in the mid-1980s, nuclear design activity pertaining to radiation-driven implosion was informed by research with ''indirect drive'' laser fusion. This work was part of the effort to investigate
Inertial Confinement Fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
. Similar work continues at the more powerful
National Ignition Facility The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research device, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition wit ...
. The Stockpile Stewardship and Management Program also benefited from research performed at NIF.


Explosive testing

Nuclear weapons are in large part designed by trial and error. The trial often involves test explosion of a prototype. In a nuclear explosion, a large number of discrete events, with various probabilities, aggregate into short-lived, chaotic energy flows inside the device casing. Complex mathematical models are required to approximate the processes, and in the 1950s there were no computers powerful enough to run them properly. Even today's computers and simulation software are not adequate. It was easy enough to design reliable weapons for the stockpile. If the prototype worked, it could be weaponized and mass-produced. It was much more difficult to understand how it worked or why it failed. Designers gathered as much data as possible during the explosion, before the device destroyed itself, and used the data to calibrate their models, often by inserting fudge factors into equations to make the simulations match experimental results. They also analyzed the weapon debris in fallout to see how much of a potential nuclear reaction had taken place.


Light pipes

An important tool for test analysis was the diagnostic light pipe. A probe inside a test device could transmit information by heating a plate of metal to incandescence, an event that could be recorded by instruments located at the far end of a long, very straight pipe. The picture below shows the Shrimp device, detonated on March 1, 1954, at Bikini, as the
Castle Bravo Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of ''Operation Castle''. Detonated on March 1, 1954, the device was the most powerful ...
test. Its 15-megaton explosion was the largest ever by the United States. The silhouette of a man is shown for scale. The device is supported from below, at the ends. The pipes going into the shot cab ceiling, which appear to be supports, are actually diagnostic light pipes. The eight pipes at the right end (1) sent information about the detonation of the primary. Two in the middle (2) marked the time when X-rays from the primary reached the radiation channel around the secondary. The last two pipes (3) noted the time radiation reached the far end of the radiation channel, the difference between (2) and (3) being the radiation transit time for the channel. From the shot cab, the pipes turned horizontally and traveled 7500 ft (2.3 km) along a causeway built on the Bikini reef to a remote-controlled data collection bunker on Namu Island. While x-rays would normally travel at the speed of light through a low-density material like the plastic foam channel filler between (2) and (3), the intensity of radiation from the exploding primary creates a relatively opaque radiation front in the channel filler, which acts like a slow-moving logjam to retard the passage of
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for ''The ...
. While the secondary is being compressed via radiation-induced ablation, neutrons from the primary catch up with the x-rays, penetrate into the secondary, and start breeding tritium via the third reaction noted in the first section above. This Li-6 + n reaction is exothermic, producing 5 MeV per event. The spark plug has not yet been compressed, and, thus, remains subcritical, so no significant fission or fusion takes place as a result. If enough neutrons arrive before implosion of the secondary is complete, though, the crucial temperature differential between the outer and inner parts of the secondary can be degraded, potentially causing the secondary to fail to ignite. The first Livermore-designed thermonuclear weapon, the Morgenstern device, failed in this manner when it was tested as
Castle Koon The Koon shot of Operation Castle was a test of a Thermonuclear weapon, thermonuclear device designed at the University of California, University of California Radiation Laboratory (UCRL), now Lawrence Livermore National Laboratory (LLNL). The " ...
on April 7, 1954. The primary ignited, but the secondary, preheated by the primary's neutron wave, suffered what was termed as an ''inefficient detonation''; thus, a weapon with a predicted one-megaton yield produced only 110 kilotons, of which merely 10 kt were attributed to fusion. These timing effects, and any problems they cause, are measured by light-pipe data. The mathematical simulations which they calibrate are called radiation flow hydrodynamics codes, or channel codes. They are used to predict the effect of future design modifications. It is not clear from the public record how successful the Shrimp light pipes were. The unmanned data bunker was far enough back to remain outside the mile-wide crater, but the 15-megaton blast, two and a half times as powerful as expected, breached the bunker by blowing its 20-ton door off the hinges and across the inside of the bunker. (The nearest people were twenty miles (32 km) farther away, in a bunker that survived intact.)


Fallout analysis

The most interesting data from Castle Bravo came from radio-chemical analysis of weapon debris in fallout. Because of a shortage of enriched lithium-6, 60% of the lithium in the Shrimp secondary was ordinary lithium-7, which doesn't breed tritium as easily as lithium-6 does. But it does breed lithium-6 as the product of an (n, 2n) reaction (one neutron in, two neutrons out), a known fact, but with unknown probability. The probability turned out to be high. Fallout analysis revealed to designers that, with the (n, 2n) reaction, the Shrimp secondary effectively had two and half times as much lithium-6 as expected. The tritium, the fusion yield, the neutrons, and the fission yield were all increased accordingly. As noted above, Bravo's fallout analysis also told the outside world, for the first time, that thermonuclear bombs are more fission devices than fusion devices. A Japanese fishing boat, ''
Daigo Fukuryū Maru was a Japanese tuna fishing boat with a crew of 23 men which was contaminated by nuclear fallout from the United States Castle Bravo thermonuclear weapon test at Bikini Atoll on March 1, 1954. The crew suffered acute radiation syndrome (ARS) ...
'', sailed home with enough fallout on her decks to allow scientists in Japan and elsewhere to determine, and announce, that most of the fallout had come from the fission of U-238 by fusion-produced 14 MeV neutrons.


Underground testing

The global alarm over radioactive fallout, which began with the Castle Bravo event, eventually drove nuclear testing literally underground. The last U.S. above-ground test took place at
Johnston Island Johnston Atoll is an unincorporated territory of the United States, currently administered by the United States Fish and Wildlife Service (USFWS). Johnston Atoll is a National Wildlife Refuge and part of the Pacific Remote Islands Marine Nation ...
on November 4, 1962. During the next three decades, until September 23, 1992, the United States conducted an average of 2.4 underground nuclear explosions per month, all but a few at the
Nevada Test Site The Nevada National Security Site (N2S2 or NNSS), known as the Nevada Test Site (NTS) until 2010, is a United States Department of Energy (DOE) reservation located in southeastern Nye County, Nevada, about 65 miles (105 km) northwest of th ...
(NTS) northwest of Las Vegas. The
Yucca Flat Yucca Flat is a closed desert drainage basin, one of four major nuclear test regions within the Nevada Test Site (NTS), and is divided into nine test sections: Areas 1 through 4 and 6 through 10. Yucca Flat is located at the eastern edge of NTS, ...
section of the NTS is covered with subsidence craters resulting from the collapse of terrain over radioactive caverns created by nuclear explosions (see photo). After the 1974
Threshold Test Ban Treaty The Treaty on the Limitation of Underground Nuclear Weapon Tests, also known as the Threshold Test Ban Treaty (TTBT), was signed in July 1974 by the United States and Soviet Union. It establishes a nuclear "threshold" by prohibiting nuclear tests ...
(TTBT), which limited underground explosions to 150 kilotons or less, warheads like the half-megaton W88 had to be tested at less than full yield. Since the primary must be detonated at full yield in order to generate data about the implosion of the secondary, the reduction in yield had to come from the secondary. Replacing much of the lithium-6 deuteride fusion fuel with lithium-7 hydride limited the tritium available for fusion, and thus the overall yield, without changing the dynamics of the implosion. The functioning of the device could be evaluated using light pipes, other sensing devices, and analysis of trapped weapon debris. The full yield of the stockpiled weapon could be calculated by extrapolation.


Production facilities

When two-stage weapons became standard in the early 1950s, weapon design determined the layout of the new, widely dispersed U.S. production facilities, and vice versa. Because primaries tend to be bulky, especially in diameter, plutonium is the fissile material of choice for pits, with beryllium reflectors. It has a smaller critical mass than uranium. The Rocky Flats plant near Boulder, Colorado, was built in 1952 for pit production and consequently became the plutonium and beryllium fabrication facility. The Y-12 plant in Oak Ridge,
Tennessee Tennessee ( , ), officially the State of Tennessee, is a landlocked state in the Southeastern region of the United States. Tennessee is the 36th-largest by area and the 15th-most populous of the 50 states. It is bordered by Kentucky to th ...
, where
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
s called
calutron A calutron is a mass spectrometer originally designed and used for separating the isotopes of uranium. It was developed by Ernest Lawrence during the Manhattan Project and was based on his earlier invention, the cyclotron. Its name was derived ...
s had enriched uranium for the
Manhattan Project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
, was redesigned to make secondaries. Fissile U-235 makes the best spark plugs because its critical mass is larger, especially in the cylindrical shape of early thermonuclear secondaries. Early experiments used the two fissile materials in combination, as composite Pu-Oy pits and spark plugs, but for mass production, it was easier to let the factories specialize: plutonium pits in primaries, uranium spark plugs and pushers in secondaries. Y-12 made lithium-6 deuteride fusion fuel and U-238 parts, the other two ingredients of secondaries. The Hanford Site near Richland WA operated Plutonium production nuclear reactors and separations facilities during World War 2 and the Cold War. Nine Plutonium production reactors were built and operated there. The first being the B-Reactor which began operations in September 1944 and the last being the N-Reactor which ceased operations in January 1987. The
Savannah River Site The Savannah River Site (SRS) is a U.S. Department of Energy (DOE) reservation in the United States in the state of South Carolina, located on land in Aiken, Allendale, and Barnwell counties adjacent to the Savannah River, southeast of August ...
in Aiken,
South Carolina )''Animis opibusque parati'' ( for, , Latin, Prepared in mind and resources, links=no) , anthem = " Carolina";" South Carolina On My Mind" , Former = Province of South Carolina , seat = Columbia , LargestCity = Charleston , LargestMetro = ...
, also built in 1952, operated
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s which converted U-238 into Pu-239 for pits, and converted lithium-6 (produced at Y-12) into tritium for booster gas. Since its reactors were moderated with heavy water, deuterium oxide, it also made deuterium for booster gas and for Y-12 to use in making lithium-6 deuteride.


Warhead design safety

Because even low-yield nuclear warheads have astounding destructive power, weapon designers have always recognised the need to incorporate mechanisms and associated procedures intended to prevent accidental detonation.


Gun-type

It is inherently dangerous to have a weapon containing a quantity and shape of fissile material which can form a critical mass through a relatively simple accident. Because of this danger, the propellant in Little Boy (four bags of
cordite Cordite is a family of smokeless propellants developed and produced in the United Kingdom since 1889 to replace black powder as a military propellant. Like modern gunpowder, cordite is classified as a low explosive because of its slow burni ...
) was inserted into the bomb in flight, shortly after takeoff on August 6, 1945. This was the first time a gun-type nuclear weapon had ever been fully assembled. If the weapon falls into water, the moderating effect of the
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
can also cause a
criticality accident A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, or divergent chain reaction. Any such event involves the unintended accumulation ...
, even without the weapon being physically damaged. Similarly, a fire caused by an aircraft crashing could easily ignite the propellant, with catastrophic results. Gun-type weapons have always been inherently unsafe.


In-flight pit insertion

Neither of these effects is likely with implosion weapons since there is normally insufficient fissile material to form a critical mass without the correct detonation of the lenses. However, the earliest implosion weapons had pits so close to criticality that accidental detonation with some nuclear yield was a concern. On August 9, 1945, Fat Man was loaded onto its airplane fully assembled, but later, when levitated pits made a space between the pit and the tamper, it was feasible to use in-flight pit insertion. The bomber would take off with no fissile material in the bomb. Some older implosion-type weapons, such as the US
Mark 4 Mark 4 is the fourth chapter of the Gospel of Mark in the New Testament of the Christian Bible. It tells the parable of the Sower, with its explanation, and the parable of the Mustard Seed. Both of these parables are paralleled in Matthew ...
and
Mark 5 Mark 5 is the fifth chapter of the Gospel of Mark in the New Testament of the Christian Bible. Taken with the calming of the sea in , there are "four striking works hichfollow each other without a break": an exorcism, a healing, and the raisin ...
, used this system. In-flight pit insertion will not work with a hollow pit in contact with its tamper.


Steel ball safety method

As shown in the diagram above, one method used to decrease the likelihood of accidental detonation employed metal balls. The balls were emptied into the pit: this prevented detonation by increasing the density of the hollow pit, thereby preventing symmetrical implosion in the event of an accident. This design was used in the Green Grass weapon, also known as the Interim Megaton Weapon, which was used in the
Violet Club Violet may refer to: Common meanings * Violet (color), a spectral color with wavelengths shorter than blue * One of a list of plants known as violet, particularly: ** ''Viola'' (plant), a genus of flowering plants Places United States * Viol ...
and Yellow Sun Mk.1 bombs.


Chain safety method

Alternatively, the pit can be "safed" by having its normally hollow core filled with an inert material such as a fine metal chain, possibly made of
cadmium Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
to absorb neutrons. While the chain is in the center of the pit, the pit cannot be compressed into an appropriate shape to fission; when the weapon is to be armed, the chain is removed. Similarly, although a serious fire could detonate the explosives, destroying the pit and spreading plutonium to contaminate the surroundings as has happened in several weapons accidents, it could not cause a nuclear explosion.


One-point safety

While the firing of one detonator out of many will not cause a hollow pit to go critical, especially a low-mass hollow pit that requires boosting, the introduction of two-point implosion systems made that possibility a real concern. In a two-point system, if one detonator fires, one entire hemisphere of the pit will implode as designed. The high-explosive charge surrounding the other hemisphere will explode progressively, from the equator toward the opposite pole. Ideally, this will pinch the equator and squeeze the second hemisphere away from the first, like toothpaste in a tube. By the time the explosion envelops it, its implosion will be separated both in time and space from the implosion of the first hemisphere. The resulting dumbbell shape, with each end reaching maximum density at a different time, may not become critical. Unfortunately, it is not possible to tell on the drawing board how this will play out. Nor is it possible using a dummy pit of U-238 and high-speed x-ray cameras, although such tests are helpful. For final determination, a test needs to be made with real fissile material. Consequently, starting in 1957, a year after Swan, both labs began one-point safety tests. Out of 25 one-point safety tests conducted in 1957 and 1958, seven had zero or slight nuclear yield (success), three had high yields of 300 t to 500 t (severe failure), and the rest had unacceptable yields between those extremes. Of particular concern was Livermore's
W47 The W47 was an American thermonuclear warhead used on the Polaris A-1 sub-launched ballistic missile system. Various models were in service from 1960 through the end of 1974. The warhead was developed by the Lawrence Radiation Laboratory between 1 ...
, which generated unacceptably high yields in one-point testing. To prevent an accidental detonation, Livermore decided to use mechanical safing on the W47. The wire safety scheme described below was the result. When testing resumed in 1961, and continued for three decades, there was sufficient time to make all warhead designs inherently one-point safe, without need for mechanical safing.


Wire safety method

In the last test before the 1958 moratorium the W47 warhead for the Polaris SLBM was found to not be one-point safe, producing an unacceptably high nuclear yield of of TNT equivalent (Hardtack II Titania). With the test moratorium in force, there was no way to refine the design and make it inherently one-point safe. A solution was devised consisting of a
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
-coated wire inserted into the weapon's hollow pit at manufacture. The warhead was armed by withdrawing the wire onto a spool driven by an electric motor. Once withdrawn, the wire could not be re-inserted. The wire had a tendency to become brittle during storage, and break or get stuck during arming, preventing complete removal and rendering the warhead a dud. It was estimated that 50–75% of warheads would fail. This required a complete rebuild of all W47 primaries. The oil used for lubricating the wire also promoted corrosion of the pit..


Strong link/weak link

Under the strong link/weak link system, "weak links" are constructed between critical nuclear weapon components (the "hard links"). In the event of an accident the weak links are designed to fail first in a manner that precludes energy transfer between them. Then, if a hard link fails in a manner that transfers or releases energy, energy can't be transferred into other weapon systems, potentially starting a nuclear detonation. Hard links are usually critical weapon components that have been hardened to survive extreme environments, while weak links can be both components deliberately inserted into the system to act as a weak link and critical nuclear components that can fail predictably. An example of a weak link would be an electrical connector that contains electrical wires made from a low melting point alloy. During a fire, those wires would melt breaking any electrical connection.


Permissive Action Link

A ''Permissive Action Link'' is an
access control In the fields of physical security and information security, access control (AC) is the selective restriction of access to a place or other resource, while access management describes the process. The act of ''accessing'' may mean consuming ...
device designed to prevent unauthorised use of nuclear weapons. Early PALs were simple electromechanical switches and have evolved into complex arming systems that include integrated yield control options, lockout devices and anti-tamper devices.


References


Notes


Bibliography

* Cohen, Sam, ''The Truth About the Neutron Bomb: The Inventor of the Bomb Speaks Out'', William Morrow & Co., 1983 * Coster-Mullen, John, "Atom Bombs: The Top Secret Inside Story of Little Boy and Fat Man", Self-Published, 2011 * Glasstone, Samuel and Dolan, Philip J., editors,
The Effects of Nuclear Weapons (third edition)
'' (PDF), U.S. Government Printing Office, 1977. * Grace, S. Charles, ''Nuclear Weapons: Principles, Effects and Survivability (Land Warfare: Brassey's New Battlefield Weapons Systems and Technology, vol 10)'' * Hansen, Chuck,
Swords of Armageddon: U.S. Nuclear Weapons Development since 1945
" (CD-ROM & download available). PDF. 2,600 pages, Sunnyvale, California, Chucklea Publications, 1995, 2007. (2nd Ed.) *

'', Office of Technology Assessment (May 1979). * Rhodes, Richard. ''The Making of the Atomic Bomb''. Simon and Schuster, New York, (1986 ) * Rhodes, Richard. ''Dark Sun: The Making of the Hydrogen Bomb''. Simon and Schuster, New York, (1995 ) * Smyth, Henry DeWolf,
Atomic Energy for Military Purposes
'', Princeton University Press, 1945. (see:
Smyth Report The Smyth Report (officially ''Atomic Energy for Military Purposes'') is the common name of an administrative history written by American physicist Henry DeWolf Smyth about the Manhattan Project, the Allied effort to develop atomic bombs dur ...
)


External links


Carey Sublette's Nuclear Weapon Archive
is a reliable source of information and has links to other sources. ** Nuclear Weapons Frequently Asked Questions

* Th
Federation of American Scientists
provides solid information on weapons of mass destruction, includin
nuclear weapons
and thei



provides a well-written primer in nuclear weapons design concepts (site navigation on righthand side).


Militarily Critical Technologies List (MCTL), Part II (1998)
(PDF) from the US Department of Defense at the Federation of American Scientists website.

Department of Energy report series published from 1994 until January 2001 which lists all known declassification actions and their dates. Hosted by Federation of American Scientists.

is an update of the 1979 court case ''USA v. The Progressive'', with links to supporting documents on nuclear weapon design.
Annotated bibliography on nuclear weapons design from the Alsos Digital Library for Nuclear Issues

The Woodrow Wilson Center's Nuclear Proliferation International History Project
or NPIHP is a global network of individuals and institutions engaged in the study of international nuclear history through archival documents, oral history interviews and other empirical sources. {{DEFAULTSORT:Nuclear Weapon Design
Design A design is a plan or specification for the construction of an object or system or for the implementation of an activity or process or the result of that plan or specification in the form of a prototype, product, or process. The verb ''to design'' ...
Weapon design