The nuclear lamina is a dense (~30 to 100
nm thick)
fibrillar
Fibrils (from the Latin ''fibra'') are structural biological materials found in nearly all living organisms. Not to be confused with fibers or filaments, fibrils tend to have diameters ranging from 10-100 nanometers (whereas fibers are micro ...
network inside the
nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
*Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucle ...
of
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
cells. It is composed of
intermediate filament
Intermediate filaments (IFs) are cytoskeletal structural components found in the cells of vertebrates, and many invertebrates. Homologues of the IF protein have been noted in an invertebrate, the cephalochordate ''Branchiostoma''.
Intermedia ...
s and
membrane associated proteins. Besides providing mechanical support, the nuclear lamina regulates important cellular events such as
DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
and
cell division
Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
. Additionally, it participates in
chromatin
Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
organization and it anchors the
nuclear pore complex
A nuclear pore is a part of a large complex of proteins, known as a nuclear pore complex that spans the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are approximately 1,000 nuclear pore complexes ...
es embedded in the
nuclear envelope
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
.
The nuclear lamina is associated with the inner face of the
inner nuclear membrane
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membr ...
of the
nuclear envelope
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
, whereas the outer face of the
outer nuclear membrane
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
is continuous with the
endoplasmic reticulum
The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
. The nuclear lamina is similar in structure to the
nuclear matrix
In biology, the nuclear matrix is the network of fibres found throughout the inside of a cell nucleus after a specific method of chemical extraction. According to some it is somewhat analogous to the cell cytoskeleton. In contrast to the cytoskelet ...
, that extends throughout the
nucleoplasm
The nucleoplasm, also known as karyoplasm, is the type of protoplasm that makes up the cell nucleus, the most prominent organelle of the eukaryotic cell. It is enclosed by the nuclear envelope, also known as the nuclear membrane. The nucleoplasm ...
.
Structure and composition
The nuclear lamina consists of two components,
lamins and nuclear lamin-associated membrane proteins. The lamins are type V intermediate filaments which can be categorized as either A-type (lamin A, C) or B-type (lamin B
1, B
2) according to
homology
Homology may refer to:
Sciences
Biology
*Homology (biology), any characteristic of biological organisms that is derived from a common ancestor
* Sequence homology, biological homology between DNA, RNA, or protein sequences
*Homologous chrom ...
of their
DNA sequence
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
s,
biochemical
Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
properties and cellular localization during the
cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and subs ...
. Type V intermediate filaments differ from
cytoplasmic
In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. Th ...
intermediate filaments in the way that they have an extended
rod domain (42 amino acid longer), that they all carry a
nuclear localization signal A nuclear localization signal ''or'' sequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines o ...
(NLS) at their
C-terminus
The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
and that they display typical
tertiary structure
Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may int ...
s. Lamin
polypeptides
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.
A p ...
have an almost complete
α-helical conformation with multiple α-helical domains separated by non-α-helical linkers that are highly conserved in length and
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
sequence. Both the C-terminus and the
N-terminus
The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
are non α-helical, with the C-terminus displaying a globular structure with immunoglobulin type folded motif. Their molecular weight ranges from 60 to 80
kilodalton
The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at ...
s (kDa).
In the
amino acid sequence
Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthe ...
of a nuclear lamin, there are also two
phosphoacceptor sites present, flanking the central rod domain. A
phosphorylation
In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
event at the onset of
mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
leads to a
conformational change
In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors.
A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
which causes the disassembly of the nuclear lamina. (discussed later in the article)
In the
vertebrate
Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, ...
genome
In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
, lamins are encoded by three
gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
s. By
alternative splicing
Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be ...
, at least seven different
polypeptide
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.
A p ...
s (splice variants) are obtained, some of which are specific for
germ cell
Germ or germs may refer to:
Science
* Germ (microorganism), an informal word for a pathogen
* Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually
* Germ layer, a primary layer of cells that forms during embry ...
s and play an important role in the chromatin reorganisation during
meiosis
Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately resu ...
. Not all organisms have the same number of lamin encoding genes; ''
Drosophila melanogaster
''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly". Starting with Ch ...
'' for example has only 2 genes, whereas ''
Caenorhabditis elegans
''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (ro ...
'' has only one.
The presence of lamin polypeptides is a property of all
animal
Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
s.
The nuclear lamin-associated
membrane proteins
Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
are either integral or peripheral membrane proteins. The most important are lamina associated polypeptides 1 and 2 (
LAP1,
LAP2), emerin, lamin B-receptor (LBR), otefin and MAN1. Due to their positioning within or their association with the inner membrane, they mediate the attachment of the nuclear lamina to the nuclear envelope.
Role and interaction aspects
The nuclear lamina is assembled by interactions of two lamin polypeptides in which the α-helical regions are wound around each other to form a two stranded α-helical coiled-coil structure, followed by a head-to-tail association of the multiple
dimer
Dimer may refer to:
* Dimer (chemistry), a chemical structure formed from two similar sub-units
** Protein dimer, a protein quaternary structure
** d-dimer
* Dimer model, an item in statistical mechanics, based on ''domino tiling''
* Julius Dimer ...
s. The linearly elongated polymer is extended laterally by a side-by-side association of polymers, resulting in a
2D structure underlying the nuclear envelope. Next to providing mechanical support to the nucleus, the nuclear lamina plays an essential role in chromatin organization, cell cycle regulation, DNA replication,
DNA repair
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dam ...
,
cell differentiation
Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
and
apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
.
Chromatin organization
The non-random organization of the genome strongly suggests that the nuclear lamina plays a role in chromatin organization. It has been shown that lamin polypeptides have an affinity for binding chromatin through their α-helical (rod like) domains at specific DNA sequences called ''
matrix attachment region
The term S/MAR (scaffold/matrix attachment region), otherwise called SAR (scaffold-attachment region), or MAR (matrix-associated region), are sequences in the DNA of eukaryotic chromosomes where the nuclear matrix attaches. As architectural DNA c ...
s'' (MAR). A MAR has a length of approximately 300–1000
bp and has a high
A/T content. Lamin A and B can also bind core
histones
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wr ...
through a sequence element in their tail domain.
Chromatin that interacts with lamina forms
lamina-associated domains (LADs). The average length of human LADs is 0.1–10
MBp. LADs are flanked by
CTCF
Transcriptional repressor CTCF also known as 11-zinc finger protein or CCCTC-binding factor is a transcription factor that in humans is encoded by the ''CTCF'' gene. CTCF is involved in many cellular processes, including transcriptional regulatio ...
-binding sites.
Cell cycle regulation
At the onset of mitosis (
prophase
Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin retic ...
,
prometaphase
Prometaphase is the phase of mitosis following prophase and preceding metaphase, in eukaryotic somatic cells. In prometaphase, the nuclear membrane breaks apart into numerous "membrane vesicles", and the chromosomes inside form protein struc ...
), the cellular machinery is engaged in the disassembly of various cellular components including structures such as the nuclear envelope, the nuclear lamina and the nuclear pore complexes. This nuclear breakdown is necessary to allow the
mitotic spindle
In cell biology, the spindle apparatus refers to the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a pr ...
to interact with the (condensed) chromosomes and to bind them at their
kinetochores
A kinetochore (, ) is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and ...
.
These different disassembly events are initiated by the
cyclin B
Cyclin B is a member of the cyclin family. Cyclin B is a mitotic cyclin. The amount of cyclin B (which binds to Cdk1) and the activity of the cyclin B-Cdk complex rise through the cell cycle until mitosis, where they fall abruptly due to degr ...
/
Cdk1
Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in th ...
protein kinase complex (
MPF). Once this complex is activated, the cell is forced into mitosis, by the subsequent activation and regulation of other
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
s or by direct phosphorylation of structural proteins involved in this cellular reorganisation. After phosphorylation by cyclin B/Cdk
1, the nuclear lamina depolymerises and B-type lamins stay associated with the fragments of the nuclear envelope whereas A-type lamins remain completely soluble throughout the remainder of the mitotic phase.
The importance of the nuclear lamina breakdown at this stage is underlined by experiments where inhibition of the disassembly event leads to a complete cell cycle arrest.
At the end of mitosis, (
anaphase
Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
,
telophase
Telophase () is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed. As chromosomes reach the cell poles, a ...
) there is a nuclear reassembly which is highly regulated in time, starting with the association of 'skeletal' proteins on the surface of the still partially condensed chromosomes, followed by nuclear envelope assembly. Novel nuclear pore complexes are formed through which nuclear lamins are actively imported by use of their NLS. This typical hierarchy raises the question whether the nuclear lamina at this stage has a stabilizing role or some regulative function, for it is clear that it plays no essential part in the nuclear membrane assembly around chromatin.
Embryonic development and cell differentiation
The presence of lamins in embryonic development is readily observed in various model organisms such as ''
Xenopus
''Xenopus'' () (Gk., ξενος, ''xenos''=strange, πους, ''pous''=foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known ...
laevis'', the chick and mammals. In ''Xenopus laevis'', five different types were identified which are present in different expression patterns during the different stages of the embryonic development. The major types are LI and LII, which are considered homologs of lamin B
1 and B2. LA are considered homologous to lamin A and LIII as a B-type lamin. A fourth type exists and is germ cell specific.
In the early embryonic stages of the chick, the only lamins present are B-type lamins. In further stages, the expression pattern of lamin B
1 decreases and there is a gradual increase in the expression of lamin A. Mammalian development seems to progress in a similar way. In the latter case as well it is the B-type lamins that are expressed in the early stages. Lamin B1 reaches the highest expression level, whereas the expression of B2 is relatively constant in the early stages and starts to increase after cell differentiation. With the development of the different kinds of tissue in a relatively advanced developmental stage, there is an increase in the levels of lamin A and lamin C.
These findings would indicate that in its most basic form, a functional nuclear lamina requires only B-type lamins.
DNA replication
Various experiments show that the nuclear lamina plays a part in the
elongation phase of DNA replication. It has been suggested that lamins provide a scaffold, essential for the assembly of the elongation complexes, or that it provides an initiation point for the assembly of this nuclear scaffold.
Not only nuclear lamina associated lamins are present during replication, but free lamin polypeptides are present as well and seem to have some regulative part in the replication process.
DNA repair
Repair of
DNA double-strand breaks can occur by either of two processes,
non-homologous end joining
Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direct ...
(NHEJ) or
homologous recombination
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
(HR). A-type lamins promote genetic stability by maintaining levels of proteins that have key roles in NHEJ and HR.
Mouse cells deficient for maturation of prelamin A show increased DNA damage and
chromosome aberrations and are more sensitive to DNA damaging agents.
Apoptosis
Apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
is a form of
programmed cell death
Programmed cell death (PCD; sometimes referred to as cellular suicide) is the death of a cell as a result of events inside of a cell, such as apoptosis or autophagy. PCD is carried out in a biological process, which usually confers advantage durin ...
that is critical in tissue
homeostasis
In biology, homeostasis (British English, British also homoeostasis) Help:IPA/English, (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physics, physical, and chemistry, chemical conditions maintained by organism, living systems. Thi ...
, and in defending the organism against invasive entry of
pathogen
In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s. Apoptosis is a highly regulated process in which the nuclear lamina is disassembled in an early stage.
In contrast to the phosphorylation-induced disassembly during mitosis, the nuclear lamina is degraded by
proteolytic
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, ...
cleavage, and both the lamins and the nuclear lamin-associated membrane proteins are targeted. This proteolytic activity is performed by members of the
caspase
Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
-protein family who cleave the lamins after
aspartic acid
Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
(Asp) residues.
Laminopathies
Defects in the genes encoding for nuclear lamin (such as lamin A and lamin B
1) have been implicated in a variety of diseases (
laminopathies
Laminopathies ('' lamino-'' + '' -opathy'') are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina. They are included in the more generic term ''nuclear envelopathies'' that was coined in 2000 fo ...
) such as:
[Yozef Gruenbaum, Katherine L. Wilson, Amnon Harel, Michal Goldberg, Merav Cohen (2000). Nuclear Lamins – Structural Proteins with fundamental functions. Journal of Structural Biology 129, 313-323]
*
Emery–Dreifuss muscular dystrophy
Emery–Dreifuss muscular dystrophy (EDMD) is a type of muscular dystrophy, a group of heritable diseases that cause progressive impairment of muscles. EDMD affects muscles used for movement (skeletal muscles), causing atrophy, weakness and contra ...
- A muscle wasting disease
*
Progeria
Progeria is a specific type of progeroid syndrome, also known as Hutchinson–Gilford syndrome. A single gene mutation is responsible for progeria. The gene, known as lamin A (LMNA), makes a protein necessary for holding the Nucleus of the cell ...
- Premature aging
*
Restrictive dermopathy
Restrictive dermopathy (RD) is a rare, lethal autosomal recessive skin condition characterized by syndromic facies, tight skin, sparse or absent eyelashes, and secondary joint changes.James, William; Berger, Timothy; Elston, Dirk (2005). ''Andrews ...
- A disease associated with extremely tight skin and other severe neonatal abnormalities
References
* Ayelet Margalit, Sylvia Vlcek, Yozef Gruenbaum, Roland Foisner (2005). Breaking and Making of the Nuclear Envelope. Journal of Cellular Biochemistry 95, 454-465
* Bruce Alberts, et al. Molecular Biology of the Cell (4th edition). Garland Science 676-677
* Geoffrey M. Cooper, Robert E. Hausman. The Cell, A Molecular Approach (4th edition). Sinauer Associates 356-360
* Goldman et al.(2002). "Nuclear lamins: building blocks of nuclear architecture". Genes and Development 16,533-547
* Joanna M. Bridger, Nicole Foeger, Ian R. Kill, Harald Herrmann (2007). The Nuclear Lamina: both a structural framework and a platform for genome organization. FEBS Journal 274, 1354–1361
* Nico Stuurman, Susanne Heins, Ueli Aebi (1998). Nuclear Lamins: Their Structure, Assembly and Interactions. Journal of Structural Biology 122, 42-46
* Tripathi K, Muralikrishna B and Parnaik VK (2009) Differential dynamics and stability of lamin A rod domain mutants IJIB, 5(1), 1-8
* Yozef Gruenbaum, Katherine L. Wilson, Amnon Harel, Michal Goldberg, Merav Cohen (2000). Nuclear Lamins – Structural Proteins with fundamental functions. Journal of Structural Biology 129, 313-323
External links
*
*
{{Nucleus
Cell biology