HOME

TheInfoList



OR:

:''See
Ricci calculus In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to b ...
and
Van der Waerden notation In theoretical physics, Van der Waerden notation refers to the usage of two-component spinors (Weyl spinors) in four spacetime dimensions. This is standard in twistor theory and supersymmetry. It is named after Bartel Leendert van der Waerden. Do ...
for the notation.'' In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
, the nonlinear Dirac equation is a model of self-interacting
Dirac fermion In physics, a Dirac fermion is a spin-½ particle (a fermion) which is different from its antiparticle. The vast majority of fermions – perhaps all – fall under this category. Description In particle physics, all fermions in the standard model ...
s. This model is widely considered in
quantum physics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
as a
toy model In the modeling of physics, a toy model is a deliberately simplistic model with many details removed so that it can be used to explain a mechanism concisely. It is also useful in a description of the fuller model. * In "toy" mathematical models ...
of self-interacting
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary partic ...
s. The nonlinear Dirac equation appears in the Einstein–Cartan–Sciama–Kibble theory of gravity, which extends
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
to matter with intrinsic angular momentum (
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
). This theory removes a constraint of the symmetry of the
affine connection In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values ...
and treats its antisymmetric part, the
torsion tensor In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a c ...
, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the
spin tensor In mathematics, mathematical physics, and theoretical physics, the spin tensor is a quantity used to describe the rotational motion of particles in spacetime. The tensor has application in general relativity and special relativity, as well as q ...
. The minimal coupling between torsion and
Dirac spinor In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
s thus generates an axial-axial, spin–spin interaction in
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
ic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spinor field, which causes fermions to be spatially extended and may remove the
ultraviolet divergence In physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infi ...
in quantum field theory.


Models

Two common examples are the massive
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/- ...
and the
Soler model The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko and re-introduced and investigated in 1970 by Mario Soler ...
.


Thirring model

The Thirring model was originally formulated as a model in (1 + 1)
space-time In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differe ...
dimensions and is characterized by the
Lagrangian density Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
: \mathcal= \overline(i\partial\!\!\!/-m)\psi -\frac\left(\overline\gamma^\mu\psi\right) \left(\overline\gamma_\mu \psi\right), where is the
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
field, is the
Dirac adjoint In quantum field theory, the Dirac adjoint defines the dual operation of a Dirac spinor. The Dirac adjoint is motivated by the need to form well-behaved, measurable quantities out of Dirac spinors, replacing the usual role of the Hermitian adjoin ...
spinor, :\partial\!\!\!/=\sum_\gamma^\mu\frac\,, (
Feynman slash notation In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If ''A'' is a covariant vector (i.e., a 1-form), : \ \stackrel\ \gamma^1 A_1 ...
is used), is the
coupling constant In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two ...
, is the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
, and are the ''two''-dimensional
gamma matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\m ...
, finally is an
index Index (or its plural form indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on a Halo megastru ...
.


Soler model

The Soler model was originally formulated in (3 + 1) space-time dimensions. It is characterized by the Lagrangian density :\mathcal = \overline \left(i\partial\!\!\!/-m \right) \psi + \frac \left(\overline \psi\right)^2, using the same notations above, except :\partial\!\!\!/=\sum_^3\gamma^\mu\frac\,, is now the
four-gradient In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and r ...
operator contracted with the ''four''-dimensional Dirac
gamma matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\m ...
, so therein .


Other models

Besides the Soler model, extensive work has been done where nonlinear versions of Dirac’s equation are used to describe purely classical, nonlinear particle-like solutions (PLS) in (3 + 1) space-time dimensions. Rañada has given a review of the subject. Although a more recent review specifically devoted to purely classical, nonlinear PLS has apparently not appeared, pertinent references are available in various more recent publications. The models reviewed by Rañada are meant to be entirely classical in nature and should properly be regarded as having nothing to do with quantum mechanics, but the dependent variable in the Dirac equation is still typically taken as a spinor. When a purely classical model of this nature is to be considered, the use of a spinor as the dependent variable seems inappropriate. If a minor modification of the underlying Dirac equation is used, the problem can be avoided in a relatively straightforward way. Instead of using the usual column vector as the dependent variable in Dirac’s equation, one can use a 4 x 4 matrix. When there is no transformation of coordinates, the leftmost column of the matrix is used in Dirac’s equation in the usual manner, but when there is to be a transformation in space-time, the four components of the dependent variable are sometimes allowed to appear in various different positions in the 4 x 4 matrix. The result can be understood in terms of a
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperc ...
since the dependent variable in Dirac’s equation can be represented as a 4 dimensional left ideal of a Clifford algebra. In this case one simply allows the dependent variable to lie in a ''different'' left ideal when there is a transformation in space-time.


Einstein–Cartan theory

In
Einstein–Cartan theory In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein ...
the Lagrangian density for a Dirac spinor field is given by (c = \hbar = 1) :\mathcal = \sqrt \left(\overline \left(i\gamma^\mu D_\mu-m \right) \psi\right), where :D_\mu=\partial_\mu + \frac\omega_\gamma^\nu \gamma^\rho is the Fock–Ivanenko
covariant derivative In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differ ...
of a spinor with respect to the affine connection, \omega_ is the
spin connection In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz ...
, g is the determinant of the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
g_, and the Dirac matrices satisfy :\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^I. The Einstein–Cartan field equations for the spin connection yield an algebraic
constraint Constraint may refer to: * Constraint (computer-aided design), a demarcation of geometrical characteristics between two or more entities or solid modeling bodies * Constraint (mathematics), a condition of an optimization problem that the solution ...
between the spin connection and the spinor field rather than a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
, which allows the spin connection to be explicitly eliminated from the theory. The final result is a nonlinear Dirac equation containing an effective "spin-spin" self-interaction, :i\gamma^\mu D_\mu \psi - m\psi = i\gamma^\mu \nabla_\mu \psi + \frac \left(\overline\gamma_\mu\gamma^5\psi\right) \gamma^\mu \gamma^5\psi - m\psi = 0, where \nabla_\mu is the general-relativistic covariant derivative of a spinor, and \kappa is the Einstein gravitational constant, \frac. The cubic term in this equation becomes significant at densities on the order of \frac{\kappa}.


See also

*
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac pa ...
*
Dirac equation in the algebra of physical space In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector (3-di ...
*
Dirac–Kähler equation In theoretical physics, the Dirac–Kähler equation, also known as the Ivanenko–Landau–Kähler equation, is the geometric analogue of the Dirac equation that can be defined on any pseudo-Riemannian manifold using the Laplace–de Rham operato ...
*
Gross–Neveu model The Gross–Neveu (GN) model is a quantum field theory model of Dirac fermions interacting via four-fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum ch ...
*
Higher-dimensional gamma matrices In mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wa ...
*
Nonlinear Schrödinger equation In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlin ...
* Pokhozhaev's identity for the stationary nonlinear Dirac equation *
Soler model The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko and re-introduced and investigated in 1970 by Mario Soler ...
*
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/- ...


References

Quantum field theory Dirac equation