HOME

TheInfoList



OR:

:''See Ricci calculus and Van der Waerden notation for the notation.'' In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a
toy model In the modeling of physics, a toy model is a deliberately simplistic model with many details removed so that it can be used to explain a mechanism concisely. It is also useful in a description of the fuller model. * In "toy" mathematical models ...
of self-interacting
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s. The nonlinear Dirac equation appears in the Einstein–Cartan–Sciama–Kibble theory of gravity, which extends
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
to matter with intrinsic angular momentum ( spin). This theory removes a constraint of the symmetry of the
affine connection In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values i ...
and treats its antisymmetric part, the
torsion tensor In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a cur ...
, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the
spin tensor In mathematics, mathematical physics, and theoretical physics, the spin tensor is a quantity used to describe the rotational motion of particles in spacetime. The tensor has application in general relativity and special relativity, as well as qu ...
. The minimal coupling between torsion and
Dirac spinor In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain com ...
s thus generates an axial-axial, spin–spin interaction in fermionic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spinor field, which causes fermions to be spatially extended and may remove the
ultraviolet divergence In physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infi ...
in quantum field theory.


Models

Two common examples are the massive
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/ ...
and the
Soler model The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko and re-introduced and investigated in 1970 by Mario S ...
.


Thirring model

The Thirring model was originally formulated as a model in (1 + 1) space-time dimensions and is characterized by the
Lagrangian density Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
: \mathcal= \overline(i\partial\!\!\!/-m)\psi -\frac\left(\overline\gamma^\mu\psi\right) \left(\overline\gamma_\mu \psi\right), where is the
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
field, is the
Dirac adjoint In quantum field theory, the Dirac adjoint defines the dual operation of a Dirac spinor. The Dirac adjoint is motivated by the need to form well-behaved, measurable quantities out of Dirac spinors, replacing the usual role of the Hermitian adjoi ...
spinor, :\partial\!\!\!/=\sum_\gamma^\mu\frac\,, ( Feynman slash notation is used), is the coupling constant, is the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
, and are the ''two''-dimensional
gamma matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\ma ...
, finally is an index.


Soler model

The Soler model was originally formulated in (3 + 1) space-time dimensions. It is characterized by the Lagrangian density :\mathcal = \overline \left(i\partial\!\!\!/-m \right) \psi + \frac \left(\overline \psi\right)^2, using the same notations above, except :\partial\!\!\!/=\sum_^3\gamma^\mu\frac\,, is now the
four-gradient In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and r ...
operator contracted with the ''four''-dimensional Dirac
gamma matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\ma ...
, so therein .


Other models

Besides the Soler model, extensive work has been done where nonlinear versions of Dirac’s equation are used to describe purely classical, nonlinear particle-like solutions (PLS) in (3 + 1) space-time dimensions. Rañada has given a review of the subject. Although a more recent review specifically devoted to purely classical, nonlinear PLS has apparently not appeared, pertinent references are available in various more recent publications. The models reviewed by Rañada are meant to be entirely classical in nature and should properly be regarded as having nothing to do with quantum mechanics, but the dependent variable in the Dirac equation is still typically taken as a spinor. When a purely classical model of this nature is to be considered, the use of a spinor as the dependent variable seems inappropriate. If a minor modification of the underlying Dirac equation is used, the problem can be avoided in a relatively straightforward way. Instead of using the usual column vector as the dependent variable in Dirac’s equation, one can use a 4 x 4 matrix. When there is no transformation of coordinates, the leftmost column of the matrix is used in Dirac’s equation in the usual manner, but when there is to be a transformation in space-time, the four components of the dependent variable are sometimes allowed to appear in various different positions in the 4 x 4 matrix. The result can be understood in terms of a Clifford algebra since the dependent variable in Dirac’s equation can be represented as a 4 dimensional left ideal of a Clifford algebra. In this case one simply allows the dependent variable to lie in a ''different'' left ideal when there is a transformation in space-time.


Einstein–Cartan theory

In
Einstein–Cartan theory In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstei ...
the Lagrangian density for a Dirac spinor field is given by (c = \hbar = 1) :\mathcal = \sqrt \left(\overline \left(i\gamma^\mu D_\mu-m \right) \psi\right), where :D_\mu=\partial_\mu + \frac\omega_\gamma^\nu \gamma^\rho is the Fock–Ivanenko covariant derivative of a spinor with respect to the affine connection, \omega_ is the
spin connection In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz tr ...
, g is the determinant of the metric tensor g_, and the Dirac matrices satisfy :\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^I. The Einstein–Cartan field equations for the spin connection yield an algebraic constraint between the spin connection and the spinor field rather than a partial differential equation, which allows the spin connection to be explicitly eliminated from the theory. The final result is a nonlinear Dirac equation containing an effective "spin-spin" self-interaction, :i\gamma^\mu D_\mu \psi - m\psi = i\gamma^\mu \nabla_\mu \psi + \frac \left(\overline\gamma_\mu\gamma^5\psi\right) \gamma^\mu \gamma^5\psi - m\psi = 0, where \nabla_\mu is the general-relativistic covariant derivative of a spinor, and \kappa is the Einstein gravitational constant, \frac. The cubic term in this equation becomes significant at densities on the order of \frac{\kappa}.


See also

*
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac par ...
* Dirac equation in the algebra of physical space * Dirac–Kähler equation *
Gross–Neveu model The Gross–Neveu (GN) model is a quantum field theory model of Dirac fermions interacting via four-fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum ...
*
Higher-dimensional gamma matrices In mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant w ...
*
Nonlinear Schrödinger equation In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlin ...
* Pokhozhaev's identity for the stationary nonlinear Dirac equation *
Soler model The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko and re-introduced and investigated in 1970 by Mario S ...
*
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/ ...


References

Quantum field theory Dirac equation