nanostructure
A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale.
In describing nanostructures, it is necessary to differentiate between the number of dimens ...
in the form of a
wire
Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample diameter 40 mm
A wire is a flexible strand of metal.
Wire is c ...
with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of
nanometer
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
s or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "
quantum wire In mesoscopic physics, a quantum wire is an electrically conducting wire in which quantum effects influence the transport properties. Usually such effects appear in the dimension of nanometers, so they are also referred to as nanowires.
Quantum e ...
s".
Many different types of nanowires exist, including superconducting (e.g.
YBCO
Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen ...
InP
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.
Manufacturing
Indium phosphide ca ...
,
GaN
The word Gan or the initials GAN may refer to:
Places
*Gan, a component of Hebrew placenames literally meaning "garden"
China
* Gan River (Jiangxi)
* Gan River (Inner Mongolia),
* Gan County, in Jiangxi province
* Gansu, abbreviated ''Gā ...
Molecular nanowires
Molecular wires (or sometimes called molecular nanowires) are molecular chains that conduct electric current. They are the proposed building blocks for molecular
electronic devices. Their typical diameters are less than three nanometers, while th ...
are composed of repeating molecular units either organic (e.g. DNA) or inorganic (e.g. Mo6S9−xIx).
Characteristics
upright=1.2, Crystalline 2×2-atom nanowire grown inside a single-wall carbon nanotube">tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ~1 nm).
file:HgTe@SWCNT.png, A noise-filtered HRTEM image of a HgTe extreme nanowire embedded down the central pore of a SWCNT. The image is also accompanied by a simulation of the crystal structure
Typical nanowires exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they are often referred to as one-dimensional (1-D) materials. Nanowires have many interesting properties that are not seen in bulk or 3-D (three-dimensional) materials. This is because
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s in nanowires are
quantum
In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
confined laterally and thus occupy energy levels that are different from the traditional continuum of energy levels or bands found in bulk materials.
Peculiar features of this
quantum confinement
A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captur ...
exhibited by certain nanowires manifest themselves in discrete values of the
electrical conductance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallel ...
. Such discrete values arise from a quantum mechanical restraint on the number of electrons that can travel through the wire at the nanometer scale. These discrete values are often referred to as the quantum of conductance and are
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
multiples of
:
They are inverse of the well-known resistance unit ''h/e2'', which is roughly equal to 25812.8
ohm
Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm.
Ohm or OHM may also refer to:
People
* Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm''
* Germán Ohm (born 1936), Mexican boxer
* Jörg Ohm (b ...
s, and referred to as the von Klitzing constant ''R''K (after
Klaus von Klitzing
Klaus von Klitzing (, born 28 June 1943, Schroda) is a German physicist, known for discovery of the integer quantum Hall effect, for which he was awarded the 1985 Nobel Prize in Physics.
Education
In 1962, Klitzing passed the Abitur at the Ar ...
, the discoverer of exact quantization). Since 1990, a fixed conventional value ''R''K-90 is accepted.
Examples of nanowires include inorganic molecular nanowires (Mo6S9−xIx, Li2Mo6Se6), which can have a diameter of 0.9 nm and be hundreds of micrometers long. Other important examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO2,TiO2), or metals (e.g. Ni, Pt).
There are many applications where nanowires may become important in electronic, opto-electronic and nanoelectromechanical devices, as additives in advanced composites, for metallic interconnects in nanoscale quantum devices, as field-emitters and as leads for biomolecular nanosensors.
Synthesis
upAn SEM image of epitaxial nanowire heterostructures grown from catalytic gold nanoparticles
There are two basic approaches to synthesizing nanowires:
top-down
Top-down may refer to:
Arts and entertainment
* " Top Down", a 2007 song by Swizz Beatz
* "Top Down", a song by Lil Yachty from ''Lil Boat 3''
* "Top Down", a song by Fifth Harmony from ''Reflection'' Science
* Top-down reading, is a part of ...
and bottom-up. A top-down approach reduces a large piece of material to small pieces, by various means such as
lithography
Lithography () is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by the German a ...
thermal oxidation
In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rat ...
. A bottom-up approach synthesizes the nanowire by combining constituent
adatom
An adatom is an atom that lies on a crystal surface, and can be thought of as the opposite of a surface vacancy. This term is used in surface chemistry and epitaxy, when describing single atoms lying on surfaces and surface roughness. The word ...
s. Most synthesis techniques use a bottom-up approach. Initial synthesis via either method may often be followed by a nanowire thermal treatment step, often involving a form of self-limiting oxidation, to fine tune the size and aspect ratio of the structures. After the bottom-up synthesis, nanowires can be integrated using pick-and-place techniques.
Nanowire production uses several common laboratory techniques, including suspension, electrochemical deposition, vapor deposition, and VLS growth.
Ion track technology
Ion tracks are damage-trails created by swift heavy ions penetrating through solids, which may be sufficiently-contiguous for chemical etching in a variety of crystalline, glassy, and/or polymeric solids. They are associated with cylindrical da ...
enables growing homogeneous and segmented nanowires down to 8 nm diameter. As nanowire oxidation rate is controlled by diameter,
thermal oxidation
In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rat ...
steps are often applied to tune their morphology.
Suspension
A suspended nanowire is a wire produced in a high-vacuum chamber held at the longitudinal extremities. Suspended nanowires can be produced by:
* The chemical etching of a larger wire
* The bombardment of a larger wire, typically with highly energetic ions
* Indenting the tip of a STM in the surface of a metal near its melting point, and then retracting it
VLS growth
A common technique for creating a nanowire is vapor-liquid-solid method (VLS), which was first reported by Wagner and Ellis in 1964 for silicon whiskers with diameters ranging from hundreds of nm to hundreds of µm. This process can produce high-quality crystalline nanowires of many semiconductor materials, for example, VLS–grown single crystalline silicon nanowires (SiNWs) with smooth surfaces could have excellent properties, such as ultra-large elasticity. This method uses a source material from either laser ablated particles or a feed gas such as
silane
Silane is an inorganic compound with chemical formula, . It is a colourless, pyrophoric, toxic gas with a sharp, repulsive smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Sila ...
.
VLS synthesis requires a catalyst. For nanowires, the best catalysts are liquid metal (such as
gold
Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
)
nanocluster
Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semico ...
s, which can either be self-assembled from a thin film by
dewetting
In fluid mechanics, dewetting is one of the processes that can occur at a solid–liquid, solid–solid or liquid–liquid interface. Generally, dewetting describes the process of retraction of a fluid from a non-wettable surface it was forced t ...
, or purchased in colloidal form and deposited on a substrate.
The source enters these nanoclusters and begins to saturate them. On reaching supersaturation, the source solidifies and grows outward from the nanocluster. Simply turning off the source can adjust the final length of the nanowire. Switching sources while still in the growth phase can create compound nanowires with super-lattices of alternating materials. For example, a method termed ENGRAVE (Encoded Nanowire GRowth and Appearance through VLS and Etching) developed by the Cahoon Lab at UNC-Chapel Hill allows for nanometer-scale morphological control via rapid ''in situ'' dopant modulation.
A single-step vapour phase reaction at elevated temperature synthesises inorganic nanowires such as Mo6S9−xIx. From another point of view, such nanowires are cluster
polymer
A polymer (; Greek '' poly-'', "many" + ''-mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s.
Similar to VLS synthesis, VSS (vapor-solid-solid) synthesis of nanowires (NWs) proceeds through thermolytic decomposition of a silicon precursor (typically phenylsilane). Unlike VLS, the catalytic seed remains in solid state when subjected to high temperature annealing of the substrate. This such type of synthesis is widely used to synthesise metal silicide/germanide nanowires through VSS alloying between a copper substrate and a silicon/germanium precursor.
Solution-phase synthesis
Solution-phase synthesis refers to techniques that grow nanowires in solution. They can produce nanowires of many types of materials. Solution-phase synthesis has the advantage that it can produce very large quantities, compared to other methods. In one technique, the
polyol
In organic chemistry, a polyol is an organic compound containing multiple hydroxyl groups (). The term "polyol" can have slightly different meanings depending on whether it is used in food science or polymer chemistry. Polyols containing two, thr ...
synthesis, ethylene glycol is both solvent and reducing agent. This technique is particularly versatile at producing nanowires of gold, lead, platinum, and silver.
The supercritical fluid-liquid-solid growth method can be used to synthesize semiconductor nanowires, e.g., Si and Ge. By using metal nanocrystals as seeds, Si and Ge organometallic precursors are fed into a reactor filled with a supercritical organic solvent, such as
toluene
Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) at ...
.
Thermolysis
Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is req ...
results in degradation of the precursor, allowing release of Si or Ge, and dissolution into the metal nanocrystals. As more of the semiconductor solute is added from the supercritical phase (due to a concentration gradient), a solid crystallite precipitates, and a nanowire grows uniaxially from the nanocrystal seed.
Non-catalytic growth
Nanowires can be also grown without the help of catalysts, which gives an advantage of pure nanowires and minimizes the number of technological steps. The simplest methods to obtain metal oxide nanowires use ordinary heating of the metals, e.g. metal wire heated with battery, by
Joule heating
Joule heating, also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an electric current through a conductor (material), conductor produces heat.
Joule's first law (also just Joule's law), also known in c ...
in air can be easily done at home.
The vast majority of nanowire-formation mechanisms are explained through the use of catalytic nanoparticles, which drive the nanowire growth and are either added intentionally or generated during the growth. However the mechanisms for catalyst-free growth of nanowires (or whiskers) were known from 1950s. Spontaneous nanowire formation by non-catalytic methods were explained by the
dislocation
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
present in specific directions or the growth anisotropy of various crystal faces. More recently, after microscopy advancement, the nanowire growth driven by
screw dislocation
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
s or twin boundaries were demonstrated. The picture on the right shows a single atomic layer growth on the tip of CuO nanowire, observed by in situ TEM microscopy during the non-catalytic synthesis of nanowire.
DNA-templated metallic nanowire synthesis
An emerging field is to use DNA strands as scaffolds for metallic nanowire synthesis. This method is investigated both for the synthesis of metallic nanowires in electronic components and for biosensing applications, in which they allow the transduction of a DNA strand into a metallic nanowire that can be electrically detected. Typically, ssDNA strands are stretched, whereafter they are decorated with metallic nanoparticles that have been functionalised with short complementary ssDNA strands.
Crack-Defined Shadow Mask Lithography
A simple method to produce nanowires with defined geometries has been recently reported using conventional optical lithography. In this approach, optical lithography is used to generate nanogaps using controlled crack formation. These nanogaps are then used as shadow mask for generating individual nanowires with precise lengths and widths. This technique allows to produce individual nanowires below 20 nm in width in a scalable way out of several metallic and metal oxide materials.
Physics
Conductivity
Several physical reasons predict that the conductivity of a nanowire will be much less than that of the corresponding bulk material. First, there is scattering from the wire boundaries, whose effect will be very significant whenever the wire width is below the free electron mean free path of the bulk material. In copper, for example, the mean free path is 40 nm. Copper nanowires less than 40 nm wide will shorten the mean free path to the wire width. Silver nanowires have very different electrical and thermal conductivity from bulk silver.
Nanowires also show other peculiar electrical properties due to their size. Unlike single wall carbon nanotubes, whose motion of electrons can fall under the regime of
ballistic transport
In mesoscopic physics, ballistic conduction (ballistic transport) is the unimpeded flow (or transport) of charge carriers (usually electrons), or energy-carrying particles, over relatively long distances in a material. In general, the resistivity ...
(meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms become more numerous compared to the atoms within the nanowire, and edge effects become more important.
Furthermore, the conductivity can undergo a quantization in energy: i.e. the energy of the electrons going through a nanowire can assume only discrete values, which are multiples of the
conductance quantum
The conductance quantum, denoted by the symbol , is the quantized unit of electrical conductance. It is defined by the elementary charge ''e'' and Planck constant ''h'' as:
:G_0 = \frac =
It appears when measuring the conductance of a quantum p ...
''G = 2e2/h'' (where ''e'' is the
charge of the electron
The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundam ...
and ''h'' is the
Planck constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
. See also the
Quantum Hall effect
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance exh ...
).
The conductivity is hence described as the sum of the transport by separate ''channels'' of different quantized energy levels. The thinner the wire is, the smaller the number of channels available to the transport of electrons.
This quantization has been demonstrated by measuring the conductivity of a nanowire suspended between two electrodes while pulling it: as its diameter reduces, its conductivity decreases in a stepwise fashion and the plateaus correspond to multiples of G.
The quantization of conductivity is more pronounced in semiconductors like Si or GaAs than in metals, due to their lower electron density and lower effective mass. It can be observed in 25 nm wide silicon fins, and results in increased
threshold voltage
The threshold voltage, commonly abbreviated as Vth or VGS(th), of a field-effect transistor (FET) is the minimum gate-to-source voltage (VGS) that is needed to create a conducting path between the source and drain terminals. It is an important s ...
. In practical terms, this means that a
MOSFET
The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
with such nanoscale silicon fins, when used in digital applications, will need a higher gate (control) voltage to switch the transistor on.
Welding
To incorporate nanowire technology into industrial applications, researchers in 2008 developed a method of welding nanowires together: a
sacrificial metal
A sacrificial metal is a metal used as a sacrificial anode in cathodic protection that corrodes to prevent a primary metal from corrosion or rusting. It may also be used for galvanization.
Equation
When two metals touch each other and water is p ...
nanowire is placed adjacent to the ends of the pieces to be joined (using the manipulators of a scanning electron microscope); then an electric current is applied, which fuses the wire ends. The technique fuses wires as small as 10 nm.
For nanowires with diameters less than 10 nm, existing welding techniques, which require precise control of the heating mechanism and which may introduce the possibility of damage, will not be practical. Recently scientists discovered that single-crystalline ultrathin gold nanowires with diameters ~3–10 nm can be "cold-welded" together within seconds by mechanical contact alone, and under remarkably low applied pressures (unlike macro- and micro-scale
cold welding
Cold welding or contact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the joint. ...
process). High-resolution
transmission electron microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
and
in situ
''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast
surface diffusion
Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters ( adparticles) at solid material surfaces.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 325 The process can generally be thought of in t ...
. Nanowire welds were also demonstrated between gold and silver, and silver nanowires (with diameters ~5–15 nm) at near room temperature, indicating that this technique may be generally applicable for ultrathin metallic nanowires. Combined with other nano- and microfabrication technologies,
cold welding
Cold welding or contact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the joint. ...
is anticipated to have potential applications in the future bottom-up assembly of metallic one-dimensional nanostructures.
Mechanical properties
The study of nanowire mechanics has boomed since the advent of the
Atomic Force Microscope
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
(AFM), and associated technologies which have enabled direct study of the response of the nanowire to an applied load. Specifically, a nanowire can be clamped from one end, and the free end displaced by an AFM tip. In this cantilever geometry, the height of the AFM is precisely known, and the force applied is precisely known. This allows for construction of a force vs. displacement curve, which can be converted to a stress vs. strain curve if the nanowire dimensions are known. From the stress-strain curve, the elastic constant known as the
Young’s Modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied len ...
can be derived, as well as the
toughness
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.strain-hardening.
Young's modulus
The elastic component of the stress-strain curve described by the Young’s Modulus, has been reported for nanowires, however the modulus depends very strongly on the microstructure. Thus a complete description of the modulus dependence on diameter is lacking. Analytically,
continuum mechanics
Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such m ...
has been applied to estimate the dependence of modulus on diameter: