Nanotechnology, also shortened to nanotech, is the use of matter on an
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, and ...
ic,
molecular
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
, and
supramolecular
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, ...
scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as
molecular nanotechnology
Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature ...
.
A more generalized description of nanotechnology was subsequently established by the
National Nanotechnology Initiative
The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments.
History
Mihail C ...
, which defined nanotechnology as the manipulation of matter with at least one dimension sized from
1 to 100
nanometers
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
(nm). This definition reflects the fact that
quantum mechanical
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
effects are important at this
quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "
nanoscale
The nanoscopic scale (or nanoscale) usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1–100 nanometers (nm). A nanometer is a billionth of a meter. The nanoscopic scale is (roughly speaking) a lo ...
technologies" to refer to the broad range of research and applications whose common trait is size.
Nanotechnology as defined by size is naturally broad, including fields of science as diverse as
surface science
Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fiel ...
,
organic chemistry
Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J.; ...
,
molecular biology
Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
,
semiconductor physics
A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
,
energy storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production.
A device that stores energy is generally called an accumulator or battery.
Energy comes in ...
,
engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
,
microfabrication
Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" o ...
, and
molecular engineering
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in whi ...
. The associated research and applications are equally diverse, ranging from extensions of conventional
device physics to completely new approaches based upon
molecular self-assembly
In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intramolecular and intermole ...
, from developing
new materials
New is an adjective referring to something recently made, discovered, or created.
New or NEW may refer to:
Music
* New, singer of K-pop group The Boyz
Albums and EPs
* ''New'' (album), by Paul McCartney, 2013
* ''New'' (EP), by Regurgitator ...
with dimensions on the nanoscale to
direct control of matter on the atomic scale.
Scientists currently debate the future
implications of nanotechnology
The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications.
Major benefits of nanotechnology ...
. Nanotechnology may be able to create many new materials and devices with a vast range of
applications
Application may refer to:
Mathematics and computing
* Application software, computer software designed to help the user to perform specific tasks
** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
, such as in
nanomedicine
Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and BioBrick, biological devices, to Nanoelectronics, nanoelectronic biosensors, and even possible future applicatio ...
,
nanoelectronics
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical pr ...
,
biomaterial
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomateria ...
s energy production, and consumer products. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the
toxicity
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
and environmental impact of nanomaterials, and their potential effects on global economics, as well as speculation about various
doomsday scenarios
A global catastrophic risk or a doomsday scenario is a hypothetical future event that could damage human well-being on a global scale, even endangering or destroying Modernity, modern civilization. An event that could cause human extinction o ...
. These concerns have led to a debate among advocacy groups and governments on whether special
regulation of nanotechnology
Because of the ongoing controversy on the implications of nanotechnology, there is significant debate concerning whether nanotechnology or nanotechnology-based products merit special government regulation. This mainly relates to when to assess n ...
is warranted.
Origins
The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superflu ...
in his talk ''
There's Plenty of Room at the Bottom
"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibi ...
'', in which he described the possibility of synthesis via direct manipulation of atoms.
The term "nano-technology" was first used by
Norio Taniguchi
was a professor of Tokyo University of Science. He coined the term '' nano-technology'' in 1974
N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng.
Tokyo, Part II, Japan Society of Precision Engineering, 1974. ...
in 1974, though it was not widely known. Inspired by Feynman's concepts,
K. Eric Drexler
Kim Eric Drexler (born April 25, 1955) is an American engineer best known for studies of the potential of molecular nanotechnology (MNT), from the 1970s and 1980s. His 1991 doctoral thesis at Massachusetts Institute of Technology was revised and ...
used the term "nanotechnology" in his 1986 book ''
Engines of Creation: The Coming Era of Nanotechnology'', which proposed the idea of a nanoscale "assembler" which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control. Also in 1986, Drexler co-founded
The Foresight Institute
The Foresight Institute (Foresight) is a San Francisco-based research non-profit that promotes the development of nanotechnology and other emerging technologies, such as safe AGI, biotech and longevity.
Foresight runs four cross-disciplinary pr ...
(with which he is no longer affiliated) to help increase public awareness and understanding of nanotechnology concepts and implications.
The emergence of nanotechnology as a field in the 1980s occurred through convergence of Drexler's theoretical and public work, which developed and popularized a conceptual framework for nanotechnology, and high-visibility experimental advances that drew additional wide-scale attention to the prospects of atomic control of matter. In the 1980s, two major breakthroughs sparked the growth of nanotechnology in the modern era. First, the invention of the
scanning tunneling microscope
A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. ...
in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope's developers
Gerd Binnig
Gerd Binnig (; born 20 July 1947) is a German physicist. He is most famous for having won the Nobel Prize in Physics jointly with Heinrich Rohrer in 1986 for the invention of the scanning tunneling microscope.
Early life and education
Binnig wa ...
and
Heinrich Rohrer
Heinrich Rohrer (6 June 1933 – 16 May 2013) was a Swiss physicist who shared half of the 1986 Nobel Prize in Physics with Gerd Binnig for the design of the scanning tunneling microscope (STM). The other half of the Prize was awarded to Ernst R ...
at
IBM Zurich Research Laboratory
IBM Research is the research and development division for IBM, an American multinational information technology company headquartered in Armonk, New York, with operations in over 170 countries. IBM Research is the largest industrial research or ...
received a
Nobel Prize in Physics
)
, image = Nobel Prize.png
, alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 1986.
Binnig,
Quate and Gerber also invented the analogous
atomic force microscope
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
that year.
Second,
fullerenes
A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
were discovered in 1985 by
Harry Kroto
Sir Harold Walter Kroto (born Harold Walter Krotoschiner; 7 October 1939 – 30 April 2016), known as Harry Kroto, was an English chemist. He shared the 1996 Nobel Prize in Chemistry with Robert Curl and Richard Smalley for their discovery of ...
,
Richard Smalley
Richard Errett Smalley (June 6, 1943 – October 28, 2005) was an American chemist who was the Gene and Norman Hackerman Professor of Chemistry, Physics, and Astronomy at Rice University. In 1996, along with Robert Curl, also a professor of ch ...
, and
Robert Curl
Robert Floyd Curl Jr. (August 23, 1933 – July 3, 2022) was an American chemist who was Pitzer–Schlumberger Professor of Natural Sciences and Professor of Chemistry at Rice University. He was awarded the Nobel Prize in Chemistry in 1996 for ...
, who together won the 1996
Nobel Prize in Chemistry
)
, image = Nobel Prize.png
, alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
. C
60 was not initially described as nanotechnology; the term was used regarding subsequent work with related
carbon nanotube
A scanning tunneling microscopy image of a single-walled carbon nanotube
Rotating single-walled zigzag carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.
''Single-wall carbon na ...
s (sometimes called
graphene
Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. tubes or Bucky tubes) which suggested potential applications for nanoscale electronics and devices. The discovery of
carbon nanotubes
A scanning tunneling microscopy image of a single-walled carbon nanotube
Rotating single-walled zigzag carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.
''Single-wall carbon nan ...
is largely attributed to
Sumio Iijima
is a Japanese physicist and inventor, often cited as the inventor of carbon nanotubes. Although carbon nanotubes had been observed prior to his "invention", Iijima's 1991 paper generated unprecedented interest in the carbon nanostructures and ...
of
NEC
is a Japanese multinational corporation, multinational information technology and electronics corporation, headquartered in Minato, Tokyo. The company was known as the Nippon Electric Company, Limited, before rebranding in 1983 as NEC. It prov ...
in 1991,
for which Iijima won the inaugural 2008
Kavli Prize
The Kavli Prize was established in 2005 as a joint venture of the Norwegian Academy of Science and Letters, the Norwegian Ministry of Education and Research, and the Kavli Foundation. It honors, supports, and recognizes scientists for outstand ...
in Nanoscience.
A nanolayer-base
metal–semiconductor junction
In solid-state physics, a metal–semiconductor (M–S) junction is a type of electrical junction in which a metal comes in close contact with a semiconductor material. It is the oldest practical semiconductor device. M–S junctions can either ...
(M–S junction)
transistor
upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch e ...
was initially proposed by A. Rose in 1960, and
fabricated by L. Geppert,
Mohamed Atalla
Mohamed M. Atalla ( ar, محمد عطاالله; August 4, 1924 – December 30, 2009) was an Egyptian-American engineer, physicist, cryptographer, inventor and entrepreneur. He was a semiconductor pioneer who made important contributions to ...
and
Dawon Kahng
Dawon Kahng ( ko, 강대원; May 4, 1931 – May 13, 1992) was a Korean-American electrical engineer and inventor, known for his work in solid-state electronics. He is best known for inventing the MOSFET (metal–oxide–semiconductor field-effe ...
in 1962. Decades later, advances in
multi-gate
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be control ...
technology enabled the
scaling
Scaling may refer to:
Science and technology
Mathematics and physics
* Scaling (geometry), a linear transformation that enlarges or diminishes objects
* Scale invariance, a feature of objects or laws that do not change if scales of length, energ ...
of
metal–oxide–semiconductor field-effect transistor
The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
(MOSFET) devices down to
nano-scale levels smaller than
20 nm
NM, nm, and variations may refer to:
Businesses and organizations
* Northwestern Mutual, financial services company in Wisconsin, United States
* Air Madrid (IATA airline designator NM), Spanish airline
* Mount Cook Airline (IATA airline desi ...
gate length, starting with the
FinFET
A fin field-effect transistor (FinFET) is a multigate device, a MOSFET (metal-oxide-semiconductor field-effect transistor) built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, f ...
(fin field-effect transistor), a three-dimensional, non-planar, double-gate MOSFET. At
UC Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public university, public land-grant university, land-grant research university in Berkeley, California. Established in 1868 as the University of Californi ...
, a team of researchers including Digh Hisamoto,
Chenming Hu
Chenming Calvin Hu (; born 1947) is a Chinese-American electronic engineer who specializes in microelectronics. He is TSMC Distinguished Professor Emeritus in the electronic engineering and computer science department of the University of Califor ...
,
Tsu-Jae King Liu
Tsu-Jae King Liu is an American academic and engineer who serves as the Dean and Roy W. Carlson Professor of Engineering at the UC Berkeley College of Engineering.
Liu is an electrical engineer with extensive expertise and achievements in both a ...
,
Jeffrey Bokor
Jeffrey Bokor is an American electrical engineer.
Bokor earned a bachelor's degree in electrical engineering from the Massachusetts Institute of Technology in 1975 and completed a doctorate in the same field at Stanford University in 1980. He then ...
and others fabricated FinFET devices down to a
17nm process in 1998, then
15nm in 2001, and then
10nm in 2002.
In the early 2000s, the field garnered increased scientific, political, and commercial attention that led to both controversy and progress. Controversies emerged regarding the definitions and potential implications of nanotechnologies, exemplified by the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
's report on nanotechnology.
Challenges were raised regarding the feasibility of applications envisioned by advocates of molecular nanotechnology, which culminated in a public debate between Drexler and Smalley in 2001 and 2003.
Meanwhile, commercialization of products based on advancements in nanoscale technologies began emerging. These products are limited to bulk applications of
nanomaterials
*
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science-based approach to nan ...
and do not involve atomic control of matter. Some examples include the
Silver Nano
Silver Nano (''Silver Nano Health System'') is a trademark name of an antibacterial technology which uses silver nanoparticles in washing machines, refrigerators, air conditioners, air purifiers and vacuum cleaners introduced by Samsung in April 2 ...
platform for using
silver nanoparticles
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silve ...
as an antibacterial agent,
nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
-based transparent sunscreens,
carbon fiber
Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon compo ...
strengthening using silica nanoparticles, and carbon nanotubes for stain-resistant textiles.
Governments moved to promote and
fund research into nanotechnology, such as in the U.S. with the
National Nanotechnology Initiative
The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments.
History
Mihail C ...
, which formalized a size-based definition of nanotechnology and established funding for research on the nanoscale, and in Europe via the European
Framework Programmes for Research and Technological Development
The Framework Programmes for Research and Technological Development, also called Framework Programmes or abbreviated FP1 to FP9, are funding programmes created by the European Union/European Commission to support and foster research in the Europea ...
.
By the mid-2000s new and serious scientific attention began to flourish. Projects emerged to produce nanotechnology roadmaps
which center on atomically precise manipulation of matter and discuss existing and projected capabilities, goals, and applications.
In 2006, a team of Korean researchers from the
Korea Advanced Institute of Science and Technology
The Korea Advanced Institute of Science and Technology (KAIST) is a national research university located in Daedeok Innopolis, Daejeon, South Korea. KAIST was established by the Korean government in 1971 as the nation's first public, research ...
(KAIST) and the National Nano Fab Center developed a
3 nm MOSFET, the world's smallest
nanoelectronic
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical pr ...
device. It was based on
gate-all-around
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be control ...
(GAA) FinFET technology.
Over sixty countries created nanotechnology
research and development
Research and development (R&D or R+D), known in Europe as research and technological development (RTD), is the set of innovative activities undertaken by corporations or governments in developing new services or products, and improving existi ...
(R&D) government programs between 2001 and 2004. Government funding was exceeded by corporate spending on nanotechnology R&D, with most of the funding coming from corporations based in the United States, Japan and Germany. The top five organizations that filed the most intellectual
patent
A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A p ...
s on nanotechnology R&D between 1970 and 2011 were
Samsung Electronics
Samsung Electronics Co., Ltd. (, sometimes shortened to SEC and stylized as SΛMSUNG) is a South Korean multinational corporation, multinational electronics corporation headquartered in Yeongtong-gu, Suwon, South Korea. It is the pinnacle of ...
(2,578 first patents),
Nippon Steel
was formed in 2012 by the merger of the old Nippon Steel and Sumitomo Metal. was established in 1970 by the merger of Fuji Iron & Steel and Yawata Iron & Steel. Nippon Steel is the world's third largest steel producer by volume as of 2019.
...
(1,490 first patents),
IBM (1,360 first patents),
Toshiba
, commonly known as Toshiba and stylized as TOSHIBA, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. Its diversified products and services include power, industrial and social infrastructure system ...
(1,298 first patents) and
Canon
Canon or Canons may refer to:
Arts and entertainment
* Canon (fiction), the conceptual material accepted as official in a fictional universe by its fan base
* Literary canon, an accepted body of works considered as high culture
** Western can ...
(1,162 first patents). The top five organizations that published the most scientific papers on nanotechnology research between 1970 and 2012 were the
Chinese Academy of Sciences
The Chinese Academy of Sciences (CAS); ), known by Academia Sinica in English until the 1980s, is the national academy of the People's Republic of China for natural sciences. It has historical origins in the Academia Sinica during the Republ ...
,
Russian Academy of Sciences
The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across t ...
,
Centre national de la recherche scientifique
The French National Centre for Scientific Research (french: link=no, Centre national de la recherche scientifique, CNRS) is the French state research organisation and is the largest fundamental science
Basic research, also called pure research o ...
,
University of Tokyo
, abbreviated as or UTokyo, is a public research university located in Bunkyō, Tokyo, Japan. Established in 1877, the university was the first Imperial University and is currently a Top Type university of the Top Global University Project by ...
and
Osaka University
, abbreviated as , is a public research university located in Osaka Prefecture, Japan. It is one of Japan's former Imperial Universities and a Designated National University listed as a "Top Type" university in the Top Global University Project. ...
.
Fundamental concepts
Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, nanotechnology refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high-performance products.
One
nanometer
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
(nm) is one billionth, or 10
−9, of a meter. By comparison, typical carbon-carbon
bond length
In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of ...
s, or the spacing between these
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, and ...
s in a
molecule
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
, are in the range , and a
DNA double-helix has a diameter around 2 nm. On the other hand, the smallest
cellular
Cellular may refer to:
*Cellular automaton, a model in discrete mathematics
* Cell biology, the evaluation of cells work and more
* ''Cellular'' (film), a 2004 movie
*Cellular frequencies, assigned to networks operating in cellular RF bands
*Cell ...
life-forms, the bacteria of the genus ''
Mycoplasma
''Mycoplasma'' is a genus of bacteria that, like the other members of the class ''Mollicutes'', lack a cell wall around their cell membranes. Peptidoglycan (murein) is absent. This characteristic makes them naturally resistant to antibiotics ...
'', are around 200 nm in length. By convention, nanotechnology is taken as the scale range following the definition used by the National Nanotechnology Initiative in the US. The lower limit is set by the size of atoms (hydrogen has the smallest atoms, which are approximately a quarter of a nm
kinetic diameter Kinetic diameter is a measure applied to atoms and molecules that expresses the likelihood that a molecule in a gas will collide with another molecule. It is an indication of the size of the molecule as a target. The kinetic diameter is not the sa ...
) since nanotechnology must build its devices from atoms and molecules. The upper limit is more or less arbitrary but is around the size below which the phenomena not observed in larger structures start to become apparent and can be made use of in the nano device. These new phenomena make nanotechnology distinct from devices which are merely miniaturised versions of an equivalent
macroscopic
The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic.
Overview
When applied to physical phenomena an ...
device; such devices are on a larger scale and come under the description of
microtechnology
Microtechnology deals with technology whose features have dimensions of the order of one micrometre (one millionth of a metre, or 10−6 metre, or 1μm). It focuses on physical and chemical processes as well as the production or manipulation of str ...
.
To put that scale in another context, the comparative size of a nanometer to a meter is the same as that of a marble to the size of the earth.
Or another way of putting it: a nanometer is the amount an average man's beard grows in the time it takes him to raise the razor to his face.
Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which
assemble themselves chemically by principles of
molecular recognition
The term molecular recognition refers to the specific interaction between two or more molecules through noncovalent bonding such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π-π interactions, halogen b ...
.
In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control.
Areas of physics such as
nanoelectronics
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical pr ...
,
nanomechanics
Nanomechanics is a branch of ''nanoscience'' studying fundamental ''mechanical'' (elastic, thermal and kinetic) properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, s ...
,
nanophotonics
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It ...
and
nanoionics
Nanoionics is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast ion transport (FIT) in all-solid-state nanoscale systems. The topics of interest include fundamental properties of ...
have evolved during the last few decades to provide a basic scientific foundation of nanotechnology.
Larger to smaller: a materials perspective
Several phenomena become pronounced as the size of the system decreases. These include
statistical mechanical effects, as well as
quantum mechanical
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
effects, for example the "
quantum
In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
size effect" where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, quantum effects can become significant when the nanometer size range is reached, typically at distances of 100 nanometers or less, the so-called
quantum realm
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
. Additionally, a number of physical (mechanical, electrical, optical, etc.) properties change when compared to macroscopic systems. One example is the increase in surface area to volume ratio altering mechanical, thermal and catalytic properties of materials. Diffusion and reactions at nanoscale, nanostructures materials and nanodevices with fast ion transport are generally referred to nanoionics. ''Mechanical'' properties of nanosystems are of interest in the nanomechanics research. The catalytic activity of nanomaterials also opens potential risks in their interaction with
biomaterial
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomateria ...
s.
Materials reduced to the nanoscale can show different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances can become transparent (copper); stable materials can turn combustible (aluminium); insoluble materials may become soluble (gold). A material such as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these quantum and surface phenomena that matter exhibits at the nanoscale.
Simple to complex: a molecular perspective
Modern chemical synthesis, synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to manufacture a wide variety of useful chemicals such as drug, pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assembly, supramolecular assemblies consisting of many molecules arranged in a well defined manner.
These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a Top-down and bottom-up#Nanotechnology, bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific configuration or arrangement is favored due to Noncovalent bonding, non-covalent intermolecular forces. The Watson–Crick base pair, basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate (biochemistry), substrate, or the specific protein folding, folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.
Such bottom-up approaches should be capable of producing devices in parallel and be much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases. Most useful structures require complex and thermodynamically unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on molecular recognition in biology, most notably Watson–Crick basepairing and enzyme-substrate interactions. The challenge for nanotechnology is whether these principles can be used to engineer new constructs in addition to natural ones.
Molecular nanotechnology: a long-term view
Molecular nanotechnology, sometimes called molecular manufacturing, describes engineered nanosystems (nanoscale machines) operating on the molecular scale. Molecular nanotechnology is especially associated with the molecular assembler, a machine that can produce a desired structure or device atom-by-atom using the principles of mechanosynthesis. Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.
When the term "nanotechnology" was independently coined and popularized by Eric Drexler (who at the time was unaware of an History of nanotechnology, earlier usage by Norio Taniguchi) it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular-scale biological analogies of traditional machine components demonstrated molecular machines were possible: by the countless examples found in biology, it is known that sophisticated, stochastically optimized Molecular machine#Biological, biological machines can be produced.
It is hoped that developments in nanotechnology will make possible their construction by some other means, perhaps using biomimetic principles. However, Drexler and other researchers have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles, namely, a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) that would enable programmable, positional assembly to atomic specification. The physics and engineering performance of exemplar designs were analyzed in Drexler's book ''Nanosystems''.
In general it is very difficult to assemble devices on the atomic scale, as one has to position atoms on other atoms of comparable size and stickiness. Another view, put forth by Carlo Montemagno, is that future nanosystems will be hybrids of silicon technology and biological molecular machines. Richard Smalley argued that mechanosynthesis are impossible due to the difficulties in mechanically manipulating individual molecules.
This led to an exchange of letters in the American Chemical Society, ACS publication Chemical & Engineering News in 2003. Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkele
They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a nanotube nanomotor, a molecular actuator, and a nanoelectromechanical relaxation oscillator. See nanotube nanomotor for more examples.
An experiment indicating that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bound the CO to the Fe by applying a voltage.
Current research
Nanomaterials
The nanomaterials field includes subfields which develop or study materials having unique properties arising from their nanoscale dimensions.
*Interface and colloid science has given rise to many materials which may be useful in nanotechnology, such as carbon nanotubes and other fullerenes, and various nanoparticles and nanorods. Nanomaterials with fast ion transport are related also to nanoionics and nanoelectronics.
*Nanoscale materials can also be used for bulk applications; most present commercial applications of nanotechnology are of this flavor.
*Progress has been made in using these materials for medical applications; see Nanomedicine.
*Nanoscale materials such as nanopillars are sometimes used in solar cells which combats the cost of traditional silicon solar cells.
*Development of applications incorporating semiconductor
nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s to be used in the next generation of products, such as display technology, lighting, solar cells and biological imaging; see quantum dots.
*Recent application of
nanomaterials
*
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science-based approach to nan ...
include a range of biomedical applications, such as tissue engineering, drug delivery, antibacterials and biosensors.
Bottom-up approaches
These seek to arrange smaller components into more complex assemblies.
*DNA nanotechnology utilizes the specificity of Watson–Crick basepairing to construct well-defined structures out of DNA and other nucleic acids.
*Approaches from the field of "classical" chemical synthesis (Inorganic and organic synthesis) also aim at designing molecules with well-defined shape (e.g. bis-peptides
).
*More generally, molecular self-assembly seeks to use concepts of supramolecular chemistry, and molecular recognition in particular, to cause single-molecule components to automatically arrange themselves into some useful conformation.
*Atomic force microscope tips can be used as a nanoscale "write head" to deposit a chemical upon a surface in a desired pattern in a process called dip pen nanolithography. This technique fits into the larger subfield of nanolithography.
*Molecular Beam Epitaxy allows for bottom up assemblies of materials, most notably semiconductor materials commonly used in chip and computing applications, stacks, gating, and nanowire lasers.
Top-down approaches
These seek to create smaller devices by using larger ones to direct their assembly.
*Many technologies that descended from conventional Semiconductor fabrication, solid-state silicon methods for fabricating microprocessors are now capable of creating features smaller than 100 nm, falling under the definition of nanotechnology. Giant magnetoresistance-based hard drives already on the market fit this description, as do atomic layer deposition (ALD) techniques. Peter Grünberg and Albert Fert received the Nobel Prize in Physics in 2007 for their discovery of Giant magnetoresistance and contributions to the field of spintronics.
*Solid-state techniques can also be used to create devices known as nanoelectromechanical systems or NEMS, which are related to microelectromechanical systems or MEMS.
*Focused ion beams can directly remove material, or even deposit material when suitable precursor gasses are applied at the same time. For example, this technique is used routinely to create sub-100 nm sections of material for analysis in Transmission electron microscopy.
*Atomic force microscope tips can be used as a nanoscale "write head" to deposit a resist, which is then followed by an etching process to remove material in a top-down method.
Functional approaches
These seek to develop components of a desired functionality without regard to how they might be assembled.
*Magnetic assembly for the synthesis of anisotropic superparamagnetic materials such as recently presented magnetic nano chains.
*Molecular scale electronics seeks to develop molecules with useful electronic properties. These could then be used as single-molecule components in a nanoelectronic device. For an example see rotaxane.
*Synthetic chemical methods can also be used to create synthetic molecular motors, such as in a so-called nanocar.
Biomimetic approaches
* Bionics or biomimicry seeks to apply biological methods and systems found in nature, to the study and design of engineering systems and modern technology. Biomineralization is one example of the systems studied.
* Bionanotechnology is the use of biomolecules for applications in nanotechnology, including use of viruses and lipid assemblies. Nanocellulose is a potential bulk-scale application.
Speculative
These subfields seek to Futures studies, anticipate what inventions nanotechnology might yield, or attempt to propose an agenda along which inquiry might progress. These often take a big-picture view of nanotechnology, with more emphasis on its societal implications than the details of how such inventions could actually be created.
*Molecular nanotechnology is a proposed approach which involves manipulating single molecules in finely controlled, deterministic ways. This is more theoretical than the other subfields, and many of its proposed techniques are beyond current capabilities.
*Nanorobotics centers on self-sufficient machines of some functionality operating at the nanoscale. There are hopes for applying nanorobots in medicine. Nevertheless, progress on innovative materials and methodologies has been demonstrated with some patents granted about new nanomanufacturing devices for future commercial applications, which also progressively helps in the development towards nanorobots with the use of embedded nanobioelectronics concepts.
*Productive nanosystems are "systems of nanosystems" which will be complex nanosystems that produce atomically precise parts for other nanosystems, not necessarily using novel nanoscale-emergent properties, but well-understood fundamentals of manufacturing. Because of the discrete (i.e. atomic) nature of matter and the possibility of exponential growth, this stage is seen as the basis of another industrial revolution. Mihail Roco, one of the architects of the USA's National Nanotechnology Initiative, has proposed four states of nanotechnology that seem to parallel the technical progress of the Industrial Revolution, progressing from passive nanostructures to active nanodevices to complex nanomachines and ultimately to productive nanosystems.
*Programmable matter seeks to design materials whose properties can be easily, reversibly and externally controlled though a fusion of information science and materials science.
*Due to the popularity and media exposure of the term nanotechnology, the words picotechnology and femtotechnology have been coined in analogy to it, although these are only used rarely and informally.
Dimensionality in nanomaterials
Nanomaterials can be classified in 0D, 1D, 2D and 3D
nanomaterials
*
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science-based approach to nan ...
. The dimensionality play a major role in determining the characteristic of nanomaterials including :wikt:physical, physical, chemical and biological characteristics. With the decrease in dimensionality, an increase in surface-to-volume ratio is observed. This indicate that smaller dimensional
nanomaterials
*
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science-based approach to nan ...
have higher surface area compared to 3D nanomaterials. Recently, two dimensional (2D) nanomaterials are extensively investigated for electronics, electronic, biomedical, drug delivery and biosensor applications.
Tools and techniques
There are several important modern developments. The
atomic force microscope
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
(AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy. Although conceptually similar to the scanning confocal microscope developed by Marvin Minsky in 1961 and the scanning acoustic microscope (SAM) developed by Calvin Quate and coworkers in the 1970s, newer scanning probe microscopes have much higher resolution, since they are not limited by the wavelength of sound or light.
The tip of a scanning probe can also be used to manipulate nanostructures (a process called positional assembly). Feature-oriented scanning methodology may be a promising way to implement these nanomanipulations in automatic mode.
However, this is still a slow process because of low scanning velocity of the microscope.
Various techniques of nanolithography such as optical lithography, X-ray lithography, dip pen nanolithography, electron beam lithography or nanoimprint lithography were also developed. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.
Another group of nanotechnological techniques include those used for fabrication of Ion track technology (track etching), nanotubes and Ion track technology (track replication), nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. The precursors of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology and which were results of nanotechnology research.
The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. By using, for example, feature-oriented scanning approach, atoms or molecules can be moved around on a surface with scanning probe microscopy techniques.
At present, it is expensive and time-consuming for mass production but very suitable for laboratory experimentation.
In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly. Dual polarisation interferometry is one tool suitable for characterisation of self assembled thin films. Another variation of the bottom-up approach is molecular beam epitaxy or MBE. Researchers at Bell Telephone Laboratories like John R. Arthur. Alfred Y. Cho, and Art C. Gossard developed and implemented MBE as a research tool in the late 1960s and 1970s. Samples made by MBE were key to the discovery of the fractional quantum Hall effect for which the 1998 Nobel Prize in Physics was awarded. MBE allows scientists to lay down atomically precise layers of atoms and, in the process, build up complex structures. Important for research on semiconductors, MBE is also widely used to make samples and devices for the newly emerging field of spintronics.
However, new therapeutic products, based on responsive nanomaterials, such as the ultradeformable, stress-sensitive Transfersome vesicles, are under development and already approved for human use in some countries.
Research and development
Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Prior to 2012, the USA invested $3.7 billion using its
National Nanotechnology Initiative
The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments.
History
Mihail C ...
, the European Union invested $1.2 billion, and Japan invested $750 million. Over sixty countries created nanotechnology
research and development
Research and development (R&D or R+D), known in Europe as research and technological development (RTD), is the set of innovative activities undertaken by corporations or governments in developing new services or products, and improving existi ...
(R&D) programs between 2001 and 2004. In 2012, the US and EU each invested on nanotechnology research, followed by Japan with . Global investment reached in 2012. Government funding was exceeded by corporate R&D spending on nanotechnology research, which was in 2012. The largest corporate R&D spenders were from the US, Japan and Germany which accounted for a combined .
Applications
As of August 21, 2008, the Project on Emerging Nanotechnologies estimates that over 800 manufacturer-identified nanotech products are publicly available, with new ones hitting the market at a pace of 3–4 per week.
The project lists all of the products in a publicly accessible online database. Most applications are limited to the use of "first generation" passive nanomaterials which includes titanium dioxide in sunscreen, cosmetics, surface coatings, and some food products; Carbon allotropes used to produce gecko tape; silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.
Further applications allow tennis balls to last longer, golf balls to fly straighter, and even bowling balls to become more durable and have a harder surface. Trousers and socks have been infused with nanotechnology so that they will last longer and keep people cool in the summer. Bandages are being infused with silver nanoparticles to heal cuts faster.
Video game consoles and personal computers may become cheaper, faster, and contain more memory thanks to nanotechnology. Also, to build structures for on chip computing with light, for example on chip optical quantum information processing, and picosecond transmission of information.
Nanotechnology may have the ability to make existing medical applications cheaper and easier to use in places like the general practitioner's office and at home. Cars are being manufactured with nanomaterials so they may need fewer metals and less fuel to operate in the future.
Scientists are now turning to nanotechnology in an attempt to develop diesel engines with cleaner exhaust fumes. Platinum is currently used as the diesel engine Catalysis, catalyst in these engines. The catalyst is what cleans the exhaust fume particles. First a reduction catalyst is employed to take nitrogen atoms from NOx molecules in order to free oxygen. Next the oxidation catalyst oxidizes the hydrocarbons and carbon monoxide to form carbon dioxide and water. Platinum is used in both the reduction and the oxidation catalysts. Using platinum though, is inefficient in that it is expensive and unsustainable. Danish company InnovationsFonden invested DKK 15 million in a search for new catalyst substitutes using nanotechnology. The goal of the project, launched in the autumn of 2014, is to maximize surface area and minimize the amount of material required. Objects tend to minimize their surface energy; two drops of water, for example, will join to form one drop and decrease surface area. If the catalyst's surface area that is exposed to the exhaust fumes is maximized, efficiency of the catalyst is maximized. The team working on this project aims to create nanoparticles that will not merge. Every time the surface is optimized, material is saved. Thus, creating these nanoparticles will increase the effectiveness of the resulting diesel engine catalyst—in turn leading to cleaner exhaust fumes—and will decrease cost. If successful, the team hopes to reduce platinum use by 25%.
Nanotechnology also has a prominent role in the fast developing field of Tissue Engineering. When designing scaffolds, researchers attempt to mimic the nanoscale features of a Cell (biology), cell's microenvironment to direct its differentiation down a suitable lineage. For example, when creating scaffolds to support the growth of bone, researchers may mimic osteoclast resorption pits.
Researchers have successfully used DNA origami-based nanobots capable of carrying out logic functions to achieve targeted drug delivery in cockroaches. It is said that the computational power of these nanobots can be scaled up to that of a Commodore 64.
Nanoelectronics
Commercial
nanoelectronic
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical pr ...
semiconductor device fabrication began in the 2010s. In 2013, SK Hynix began commercial mass-production of a 16 nanometer, 16nm process,
TSMC began production of a 16nm
FinFET
A fin field-effect transistor (FinFET) is a multigate device, a MOSFET (metal-oxide-semiconductor field-effect transistor) built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, f ...
process, and
Samsung Electronics
Samsung Electronics Co., Ltd. (, sometimes shortened to SEC and stylized as SΛMSUNG) is a South Korean multinational corporation, multinational electronics corporation headquartered in Yeongtong-gu, Suwon, South Korea. It is the pinnacle of ...
began production of a
10nm process.
TSMC began production of a 7 nm process in 2017,
and Samsung began production of a 5 nm process in 2018. In 2019, Samsung announced plans for the commercial production of a 3nm GAAFET process by 2021.
Commercial production of nanoelectronic semiconductor memory also began in the 2010s. In 2013, SK Hynix began mass-production of 16 nanometer, 16nm NAND flash memory,
and Samsung began production of
10nm multi-level cell (MLC) NAND flash memory.
In 2017, TSMC began production of Static random-access memory, SRAM memory using a 7 nm process.
Implications
An area of concern is the effect that industrial-scale manufacturing and use of nanomaterials would have on human health and the environment, as suggested by nanotoxicology research. For these reasons, some groups advocate that nanotechnology be regulated by governments. Others counter that overregulation would stifle scientific research and the development of beneficial innovations. Public health research agencies, such as the National Institute for Occupational Safety and Health are actively conducting research on potential health effects stemming from exposures to nanoparticles.
Some nanoparticle products may have unintended consequences. Researchers have discovered that bacteriostatic silver nanoparticles used in socks to reduce foot odor are being released in the wash. These particles are then flushed into the waste water stream and may destroy bacteria which are critical components of natural ecosystems, farms, and waste treatment processes.
Public deliberations on risk perception in the US and UK carried out by the Center for Nanotechnology in Society found that participants were more positive about nanotechnologies for energy applications than for health applications, with health applications raising moral and ethical dilemmas such as cost and availability.
[Harthorn, Barbara Herr (January 23, 2009]
"People in the US and the UK show strong similarities in their attitudes toward nanotechnologies"
. Nanotechnology Today.
Experts, including director of the Woodrow Wilson Center's Project on Emerging Nanotechnologies David Rejeski, have testified that successful commercialization depends on adequate oversight, risk research strategy, and public engagement. Berkeley, California is currently the only city in the United States to regulate nanotechnology; Cambridge, Massachusetts in 2008 considered enacting a similar law, but ultimately rejected it.
Health and environmental concerns
Nanofibers are used in several areas and in different products, in everything from aircraft wings to tennis rackets. Inhaling airborne nanoparticles and nanofibers may lead to a number of pulmonary diseases, e.g. fibrosis. Researchers have found that when rats breathed in nanoparticles, the particles settled in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress response and that nanoparticles induce skin aging through oxidative stress in hairless mice.
A two-year study at UCLA's School of Public Health found lab mice consuming nano-titanium dioxide showed DNA and chromosome damage to a degree "linked to all the big killers of man, namely cancer, heart disease, neurological disease and aging".
A Nature Nanotechnology study suggests some forms of Carbon nanotube, carbon nanotubes – a poster child for the "nanotechnology revolution" – could be as harmful as asbestos if inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh, Scotland, who contributed to the article on
carbon nanotube
A scanning tunneling microscopy image of a single-walled carbon nanotube
Rotating single-walled zigzag carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.
''Single-wall carbon na ...
s said "We know that some of them probably have the potential to cause mesothelioma. So those sorts of materials need to be handled very carefully." In the absence of specific regulation forthcoming from governments, Paull and Lyons (2008) have called for an exclusion of engineered nanoparticles in food. A newspaper article reports that workers in a paint factory developed serious lung disease and nanoparticles were found in their lungs.
[Nanofibres 'may pose health risk']
. BBC. 2012-08-24
Regulation
Calls for tighter regulation of nanotechnology have occurred alongside a growing debate related to the human health and safety risks of nanotechnology. There is significant debate about who is responsible for the regulation of nanotechnology. Some regulatory agencies currently cover some nanotechnology products and processes (to varying degrees) – by "bolting on" nanotechnology to existing regulations – there are clear gaps in these regimes. Davies (2008) has proposed a regulatory road map describing steps to deal with these shortcomings.
Stakeholders concerned by the lack of a regulatory framework to assess and control risks associated with the release of nanoparticles and nanotubes have drawn parallels with bovine spongiform encephalopathy ("mad cow" disease), thalidomide, genetically modified food, nuclear energy, reproductive technologies, biotechnology, and asbestosis. Dr. Andrew Maynard, chief science advisor to the Woodrow Wilson Center's Project on Emerging Nanotechnologies, concludes that there is insufficient funding for human health and safety research, and as a result there is currently limited understanding of the human health and safety risks associated with nanotechnology. As a result, some academics have called for stricter application of the precautionary principle, with delayed marketing approval, enhanced labelling and additional safety data development requirements in relation to certain forms of nanotechnology.
The Royal Society report
identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that "manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure" (p. xiii).
The Center for Nanotechnology in Society has found that people respond to nanotechnologies differently, depending on application – with participants in deliberations, public deliberations more positive about nanotechnologies for energy than health applications – suggesting that any public calls for nano regulations may differ by technology sector.
See also
* Carbon nanotube
* Electrostatic deflection (molecular physics/nanotechnology)
* Energy applications of nanotechnology
* Ethics of nanotechnologies
* Ion implantation-induced nanoparticle formation
* Gold nanoparticle
* List of emerging technologies
* List of nanotechnology organizations
* List of software for nanostructures modeling
* Magnetic nanochains
* Materiomics
* Nano-thermite
* Molecular design software
* Molecular mechanics
* Nanobiotechnology
* Nanoelectromechanical relay
* Nanoengineering
* Nanofluidics
* NanoHUB
* Nanometrology
* Nanoneuronics
* Nanoparticle
* Nanoscale networks
* Nanotechnology education
* Nanotechnology in fiction
* Nanotechnology in water treatment
* Nanoweapons
*
National Nanotechnology Initiative
The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments.
History
Mihail C ...
* Self-assembly of nanoparticles
* Top-down and bottom-up#Nanotechnology, Top-down and bottom-up
* Translational research
* Wet nanotechnology
References
External links
*
What is Nanotechnology?(A Vega/BBC/OU Video Discussion).
{{Authority control
Nanotechnology,
1960 introductions
1985 introductions
Articles containing video clips
Emerging technologies
1986 neologisms
1970s neologisms