Matrix Congruence
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, two square matrices ''A'' and ''B'' over a field are called congruent if there exists an invertible matrix ''P'' over the same field such that :''P''T''AP'' = ''B'' where "T" denotes the matrix transpose. Matrix congruence is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
or
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
on a
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, ยง2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to disti ...
vector space: two matrices are congruent if and only if they represent the same bilinear form with respect to different bases. Note that Halmos defines congruence in terms of conjugate transpose (with respect to a complex inner product space) rather than transpose, but this definition has not been adopted by most other authors.


Congruence over the reals

Sylvester's law of inertia states that two congruent symmetric matrices with real entries have the same numbers of positive, negative, and zero eigenvalues. That is, the number of eigenvalues of each sign is an invariant of the associated quadratic form.


See also

*
Congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done wi ...
* Matrix similarity * Matrix equivalence


References

* * * * * * {{Matrix classes Linear algebra Matrices Equivalence (mathematics)