An agent-based model (ABM) is a
computational model
A computational model uses computer programs to simulate and study complex systems using an algorithmic or mechanistic approach and is widely used in a diverse range of fields spanning from physics, chemistry and biology to economics, psychology, ...
for
simulating the actions and interactions of
autonomous agents (both individual or collective entities such as organizations or groups) in order to understand the behavior of a system and what governs its outcomes. It combines elements of
game theory,
complex systems,
emergence,
computational sociology
Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like soc ...
,
multi-agent system
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents.Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A.,A Decentralized Cluster Formation Containment Framework f ...
s, and
evolutionary programming Evolutionary programming is one of the four major evolutionary algorithm paradigms. It is similar to genetic programming, but the structure of the program to be optimized is fixed, while its numerical parameters are allowed to evolve.
It was fir ...
.
Monte Carlo method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be determi ...
s are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including
biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, ecology and
social science
Social science is one of the branches of science, devoted to the study of societies and the relationships among individuals within those societies. The term was formerly used to refer to the field of sociology, the original "science of so ...
.
Agent-based modeling is related to, but distinct from, the concept of
multi-agent system
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents.Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A.,A Decentralized Cluster Formation Containment Framework f ...
s or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.
Agent-based models are a kind of
microscale model that simulate the simultaneous operations and interactions of multiple agents in an attempt to re-create and predict the appearance of complex phenomena. The process is one of
emergence, which some express as "the whole is greater than the sum of its parts". In other words, higher-level system properties emerge from the interactions of lower-level subsystems. Or, macro-scale state changes emerge from micro-scale agent behaviors. Or, simple behaviors (meaning rules followed by agents) generate complex behaviors (meaning state changes at the whole system level).
Individual agents are typically characterized as
boundedly rational, presumed to be acting in what they perceive as their own interests, such as reproduction, economic benefit, or social status, using heuristics or simple decision-making rules. ABM agents may experience "learning", adaptation, and reproduction.
Most agent-based models are composed of: (1) numerous agents specified at various scales (typically referred to as agent-granularity); (2) decision-making heuristics; (3) learning rules or adaptive processes; (4) an
interaction topology; and (5) an environment. ABMs are typically implemented as
computer simulations, either as custom software, or via ABM toolkits, and this software can be then used to test how changes in individual behaviors will affect the system's emerging overall behavior.
History
The idea of agent-based modeling was developed as a relatively simple concept in the late 1940s. Since it requires computation-intensive procedures, it did not become widespread until the 1990s.
Early developments
The history of the agent-based model can be traced back to the
Von Neumann machine, a theoretical machine capable of reproduction. The device
von Neumann Von Neumann may refer to:
* John von Neumann (1903–1957), a Hungarian American mathematician
* Von Neumann family
* Von Neumann (surname), a German surname
* Von Neumann (crater), a lunar impact crater
See also
* Von Neumann algebra
* Von Ne ...
proposed would follow precisely detailed instructions to fashion a copy of itself. The concept was then built upon by von Neumann's friend
Stanislaw Ulam, also a mathematician; Ulam suggested that the machine be built on paper, as a collection of cells on a grid. The idea intrigued von Neumann, who drew it up—creating the first of the devices later termed
cellular automata
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessel ...
.
Another advance was introduced by the mathematician
John Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches ...
. He constructed the well-known
Game of Life. Unlike von Neumann's machine, Conway's Game of Life operated by simple rules in a virtual world in the form of a 2-dimensional
checkerboard.
The
Simula programming language, developed in the mid 1960s and widely implemented by the early 1970s, was the first framework for automating step-by-step agent simulations.
1970s and 1980s: the first models
One of the earliest agent-based models in concept was
Thomas Schelling
Thomas Crombie Schelling (April 14, 1921 – December 13, 2016) was an American economist and professor of foreign policy, national security, nuclear strategy, and arms control at the School of Public Policy at University of Maryland, College ...
's segregation model,
which was discussed in his paper "Dynamic Models of Segregation" in 1971. Though Schelling originally used coins and graph paper rather than computers, his models embodied the basic concept of agent-based models as autonomous agents interacting in a shared environment with an observed aggregate, emergent outcome.
In the early 1980s,
Robert Axelrod
Robert Marshall Axelrod (born May 27, 1943) is an American political scientist. He is Professor of Political Science and Public Policy at the University of Michigan where he has been since 1974. He is best known for his interdisciplinary work o ...
hosted a tournament of
Prisoner's Dilemma
The Prisoner's Dilemma is an example of a game analyzed in game theory. It is also a thought experiment that challenges two completely rational agents to a dilemma: cooperate with their partner for mutual reward, or betray their partner ("def ...
strategies and had them interact in an agent-based manner to determine a winner. Axelrod would go on to develop many other agent-based models in the field of political science that examine phenomena from
ethnocentrism to the dissemination of culture.
By the late 1980s,
Craig Reynolds' work on
flocking models contributed to the development of some of the first biological agent-based models that contained social characteristics. He tried to model the reality of lively biological agents, known as
artificial life
Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry ...
, a term coined by
Christopher Langton
__NOTOC__
Christopher Gale Langton (born 1948/49) is an American computer scientist and one of the founders of the field of artificial life. He coined the term in the late 1980s when he organized the first "Workshop on the Synthesis and Simulati ...
.
The first use of the word "agent" and a definition as it is currently used today is hard to track down. One candidate appears to be
John Holland and John H. Miller's 1991 paper "Artificial Adaptive Agents in Economic Theory",
based on an earlier conference presentation of theirs.
At the same time, during the 1980s, social scientists, mathematicians, operations researchers, and a scattering of people from other disciplines developed Computational and Mathematical Organization Theory (CMOT). This field grew as a special interest group of The Institute of Management Sciences (TIMS) and its sister society, the Operations Research Society of America (ORSA).
1990s: expansion
The 1990s were especially notable for the expansion of ABM within the social sciences, one notable effort was the large-scale ABM,
Sugarscape, developed by
Joshua M. Epstein
Joshua Morris Epstein is Professor of Epidemiology at the New York University College of Global Public Health. Formerly Professor of Emergency Medicine at Johns Hopkins University, with joint appointments in the departments of Applied Mathematic ...
and
Robert Axtell
Robert Axtell is a professor at George Mason University, Krasnow Institute for Advanced Study, where he is
departmental chair of the Department of Computational Social Science. He is also a member of the External Faculty of the Santa Fe Institu ...
to simulate and explore the role of social phenomena such as seasonal migrations, pollution, sexual reproduction, combat, and transmission of disease and even culture.
Other notable 1990s developments included
Carnegie Mellon University's
Kathleen Carley
Kathleen M. Carley is an American social scientist specializing in dynamic network analysis. She is a professor in the School of Computer Science in the Institute for Software Research at Carnegie Mellon University and also holds appointments ...
ABM, to explore the co-evolution of social networks and culture.
During this 1990s timeframe
Nigel Gilbert
Geoffrey Nigel Gilbert (born 21 March 1950) is a British sociologist and a pioneer in the use of agent-based models in the social sciences. He is the founder and director of the ''Centre for Research in Social Simulation'' ( University of Sur ...
published the first textbook on Social Simulation: Simulation for the social scientist (1999) and established a journal from the perspective of social sciences: the ''
Journal of Artificial Societies and Social Simulation
The ''Journal of Artificial Societies and Social Simulation'' (JASSS) is a quarterly Peer review, peer-reviewed academic journal created by Nigel Gilbert (University of Surrey). The current editor is Flaminio Squazzoni. The journal publishes arti ...
'' (JASSS). Other than JASSS, agent-based models of any discipline are within scope of SpringerOpen journal ''
Complex Adaptive Systems Modeling'' (CASM).
Through the mid-1990s, the social sciences thread of ABM began to focus on such issues as designing effective teams, understanding the communication required for organizational effectiveness, and the behavior of social networks. CMOT—later renamed Computational Analysis of Social and Organizational Systems (CASOS)—incorporated more and more agent-based modeling. Samuelson (2000) is a good brief overview of the early history, and Samuelson (2005) and Samuelson and Macal (2006) trace the more recent developments.
In the late 1990s, the merger of TIMS and ORSA to form
INFORMS
The Institute for Operations Research and the Management Sciences (INFORMS) is an international society for practitioners in the fields of operations research (O.R.), management science, and analytics. It was established in 1995 with the merger o ...
, and the move by INFORMS from two meetings each year to one, helped to spur the CMOT group to form a separate society, the North American Association for Computational Social and Organizational Sciences (NAACSOS). Kathleen Carley was a major contributor, especially to models of social networks, obtaining
National Science Foundation
The National Science Foundation (NSF) is an independent agency of the United States government that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National ...
funding for the annual conference and serving as the first President of NAACSOS. She was succeeded by David Sallach of the
University of Chicago
The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private university, private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park, Chicago, Hyde Park neighborhood. The University of Chic ...
and
Argonne National Laboratory, and then by Michael Prietula of
Emory University
Emory University is a private research university in Atlanta, Georgia. Founded in 1836 as "Emory College" by the Methodist Episcopal Church and named in honor of Methodist bishop John Emory, Emory is the second-oldest private institution of ...
. At about the same time NAACSOS began, the
European Social Simulation Association
The European Social Simulation Association (ESSA) is a scientific society aimed at promoting the development of social simulation research, education and application in Europe. It has over 350 members from several European countries. The associati ...
(ESSA) and the Pacific Asian Association for Agent-Based Approach in Social Systems Science (PAAA), counterparts of NAACSOS, were organized. As of 2013, these three organizations collaborate internationally. The First World Congress on Social Simulation was held under their joint sponsorship in Kyoto, Japan, in August 2006. The Second World Congress was held in the northern Virginia suburbs of Washington, D.C., in July 2008, with
George Mason University taking the lead role in local arrangements.
2000s and later
More recently,
Ron Sun
Ron Sun is a cognitive scientist who made significant contributions to computational psychology and other areas of cognitive science and artificial intelligence. He is currently professor of cognitive sciences at Rensselaer Polytechnic Institute ...
developed methods for basing agent-based simulation on models of human cognition, known as
cognitive social simulation. Bill McKelvey, Suzanne Lohmann, Dario Nardi, Dwight Read and others at
UCLA
The University of California, Los Angeles (UCLA) is a public land-grant research university in Los Angeles, California. UCLA's academic roots were established in 1881 as a teachers college then known as the southern branch of the California ...
have also made significant contributions in organizational behavior and decision-making. Since 2001, UCLA has arranged a conference at Lake Arrowhead, California, that has become another major gathering point for practitioners in this field.
Theory
Most computational modeling research describes systems in
equilibrium or as moving between equilibria. Agent-based modeling, however, using simple rules, can result in different sorts of complex and interesting behavior. The three ideas central to agent-based models are agents as objects,
emergence, and
complexity.
Agent-based models consist of dynamically interacting rule-based agents. The systems within which they interact can create real-world-like complexity. Typically agents are
situated
{{dictionary
In artificial intelligence and cognitive science, the term situated refers to an agent which is embedded in an environment. The term ''situated'' is commonly used to refer to robots, but some researchers argue that software agents c ...
in space and time and reside in networks or in lattice-like neighborhoods. The location of the agents and their responsive behavior are encoded in
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
ic form in computer programs. In some cases, though not always, the agents may be considered as intelligent and purposeful. In ecological ABM (often referred to as "individual-based models" in ecology), agents may, for example, be trees in a forest, and would not be considered intelligent, although they may be "purposeful" in the sense of optimizing access to a resource (such as water).
The modeling process is best described as
inductive. The modeler makes those assumptions thought most relevant to the situation at hand and then watches phenomena emerge from the agents' interactions. Sometimes that result is an equilibrium. Sometimes it is an emergent pattern. Sometimes, however, it is an unintelligible mangle.
In some ways, agent-based models complement traditional analytic methods. Where analytic methods enable humans to characterize the equilibria of a system, agent-based models allow the possibility of generating those equilibria. This generative contribution may be the most mainstream of the potential benefits of agent-based modeling. Agent-based models can explain the emergence of higher-order patterns—network structures of terrorist organizations and the Internet,
power-law distributions
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one q ...
in the sizes of traffic jams, wars, and stock-market crashes, and social segregation that persists despite populations of tolerant people. Agent-based models also can be used to identify lever points, defined as moments in time in which interventions have extreme consequences, and to distinguish among types of path dependency.
Rather than focusing on stable states, many models consider a system's robustness—the ways that complex systems adapt to internal and external pressures so as to maintain their functionalities. The task of harnessing that complexity requires consideration of the agents themselves—their diversity, connectedness, and level of interactions.
Framework
Recent work on the Modeling and simulation of Complex Adaptive Systems has demonstrated the need for combining agent-based and complex network based models. describe a framework consisting of four levels of developing models of complex adaptive systems described using several example multidisciplinary case studies:
# Complex Network Modeling Level for developing models using interaction data of various system components.
# Exploratory Agent-based Modeling Level for developing agent-based models for assessing the feasibility of further research. This can e.g. be useful for developing proof-of-concept models such as for funding applications without requiring an extensive learning curve for the researchers.
# Descriptive Agent-based Modeling (DREAM) for developing descriptions of agent-based models by means of using templates and complex network-based models. Building DREAM models allows model comparison across scientific disciplines.
# Validated agent-based modeling using Virtual Overlay Multiagent system (VOMAS) for the development of verified and validated models in a formal manner.
Other methods of describing agent-based models include code templates and text-based methods such as the ODD (Overview, Design concepts, and Design Details) protocol.
The role of the environment where agents live, both macro and micro, is also becoming an important factor in agent-based modelling and simulation work. Simple environment affords simple agents, but complex environments generates diversity of behaviour.
Multi-Scale modelling
One strength of agent-based modelling is its ability to mediate information flow between scales. When additional details about an agent are needed, a researcher can integrate it with models describing the extra details. When one is interested in the emergent behaviours demonstrated by the agent population, they can combine the agent-based model with a continuum model describing population dynamics. For example, in a study about CD4+ T cells (a key cell type in the adaptive immune system), the researchers modelled biological phenomena occurring at different spatial (intracellular, cellular, and systemic), temporal, and organizational scales (signal transduction, gene regulation, metabolism, cellular behaviors, and cytokine transport). In the resulting modular model, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models, cell population dynamics are described by an agent-based model, and systemic cytokine concentrations by ordinary differential equations. In this multi-scale model, the agent-based model occupies the central place and orchestrates every stream of information flow between scales.
Applications
In modeling complex adaptive systems
We live in a very complex world where we face complex phenomena such as the formation of social norms and emergence of new disruptive technologies. To better understand such phenomena, social scientists often use a reductionism approach where they reduce complex systems to lower-lever variables and model the relationships among them through a scheme of equations such as
partial differential equation (PDE). This approach that is called equation-based modeling (EBM) has some basic weaknesses in modeling real complex systems. EBMs emphasize nonrealistic assumptions, such as unbounded rationality and perfect information, while adaptability, evolvability, and network effects go unaddressed. In tackling deficiencies of reductionism, the framework of
complex adaptive systems
A complex adaptive system is a system that is '' complex'' in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is '' adaptive'' in that the indiv ...
(CAS) has proven very influential in the past two decades. In contrast to reductionism, in the CAS framework, complex phenomena are studied in an organic manner where their agents are supposed to be both boundedly rational and adaptive. As a powerful methodology for CAS modeling, agent-based modeling (ABM) has gained a growing popularity among academics and practitioners. ABMs show how agents’ simple behavioral rules and their local interactions at micro-scale can generate surprisingly complex patterns at macro-scale.
In biology
Agent-based modeling has been used extensively in biology, including the analysis of the spread of
epidemics
An epidemic (from Greek ἐπί ''epi'' "upon or above" and δῆμος ''demos'' "people") is the rapid spread of disease to a large number of patients among a given population within an area in a short period of time.
Epidemics of infectious d ...
, and the threat of
biowarfare
Biological warfare, also known as germ warfare, is the use of biological toxins or infectious agents such as bacteria, viruses, insects, and fungi with the intent to kill, harm or incapacitate humans, animals or plants as an act of war. Bi ...
,
biological applications including
population dynamics, stochastic gene expression, plant-animal interactions, vegetation ecology,
[Ch'ng, E. (2009) An Artificial Life-Based Vegetation Modelling Approach for Biodiversity Research, in Nature-Inspired informatics for Intelligent Applications and Knowledge Discovery: Implications in Business, Science and Engineering, R. Chiong, Editor. 2009, IGI Global: Hershey, PA. http://complexity.io/Publications/NII-alifeVeg-eCHNG.pdf ] landscape diversity,
sociobiology
Sociobiology is a field of biology that aims to examine and explain social behavior in terms of evolution. It draws from disciplines including psychology, ethology, anthropology, evolution, zoology, archaeology, and population genetics. Within ...
,
the growth and decline of ancient civilizations, evolution of ethnocentric behavior, forced displacement/migration, language choice dynamics,
cognitive modeling A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set o ...
, and biomedical applications including modeling 3D breast tissue formation/morphogenesis, the effects of ionizing radiation on mammary stem cell subpopulation dynamics, inflammation,
and the human
immune system
The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splint ...
. Agent-based models have also been used for developing decision support systems such as for breast cancer. Agent-based models are increasingly being used to model pharmacological systems in early stage and pre-clinical research to aid in drug development and gain insights into biological systems that would not be possible ''a priori''.
Military applications have also been evaluated. Moreover, agent-based models have been recently employed to study molecular-level biological systems. Agent-based models have also been written to describe ecological processes at work in ancient systems, such as those in dinosaur environments and more recent ancient systems as well.
In epidemiology
Agent-based models now complement traditional
compartmental models, the usual type of epidemiological models. ABMs have been shown to be superior to compartmental models in regard to the accuracy of predictions. Recently, ABMs such as
CovidSim
CovidSim is an epidemiological model for COVID-19 developed by Imperial College COVID-19 Response Team, led by Neil Ferguson. The Imperial College study addresses the question: If complete suppression is not feasible, what is the best strategy ...
by epidemiologist
Neil Ferguson, have been used to inform public health (nonpharmaceutical) interventions against the spread of
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. The virus previously had a ...
. Epidemiological ABMs have been criticized for simplifying and unrealistic assumptions. Still, they can be useful in informing decisions regarding mitigation and suppression measures in cases when ABMs are accurately calibrated.
In business, technology and network theory
Agent-based models have been used since the mid-1990s to solve a variety of business and technology problems. Examples of applications include
marketing
Marketing is the process of exploring, creating, and delivering value to meet the needs of a target market in terms of goods and services; potentially including selection of a target audience; selection of certain attributes or themes to emph ...
,
organizational behaviour
Organizational behavior (OB) or organisational behaviour is the: "study of human behavior in organizational settings, the interface between human behavior and the organization, and the organization itself".Moorhead, G., & Griffin, R. W. (1995) ...
and
cognition,
team working,
supply chain optimization
Supply-chain optimization (SCO) aims to ensure the optimal operation of a manufacturing and distribution of supply chain. This includes the optimal placement of inventory within the supply chain, minimizing operating costs including manufacturin ...
and logistics, modeling of
consumer behavior, including
word of mouth
Word of mouth, or ''viva voce'', is the passing of information from person to person using oral communication, which could be as simple as telling someone the time of day. Storytelling is a common form of word-of-mouth communication where one pe ...
,
social network
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for ...
effects,
distributed computing
A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. Distributed computing is a field of computer sci ...
,
workforce management Workforce management (WFM) is an institutional process that maximizes performance levels and competency for an organization. The process includes all the activities needed to maintain a productive workforce, such as field service management, human ...
, and
portfolio management. They have also been used to analyze
traffic congestion.
Recently, agent based modelling and simulation has been applied to various domains such as studying the impact of publication venues by researchers in the computer science domain (journals versus conferences). In addition, ABMs have been used to simulate information delivery in ambient assisted environments. A November 2016 article in
arXiv
arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of ...
analyzed an agent based simulation of posts spread in
Facebook
Facebook is an online social media and social networking service owned by American company Meta Platforms. Founded in 2004 by Mark Zuckerberg with fellow Harvard College students and roommates Eduardo Saverin, Andrew McCollum, Dustin Mosk ...
. In the domain of peer-to-peer, ad hoc and other self-organizing and complex networks, the usefulness of agent based modeling and simulation has been shown. The use of a computer science-based formal specification framework coupled with
wireless sensor networks
Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental c ...
and an agent-based simulation has recently been demonstrated.
Agent based evolutionary search or algorithm is a new research topic for solving complex optimization problems.
In economics and social sciences
Prior to, and in the wake of the
2008 financial crisis, interest has grown in ABMs as possible tools for economic analysis. ABMs do not assume the economy can achieve equilibrium and "
representative agent
Economists use the term representative agent to refer to the typical decision-maker of a certain type (for example, the typical consumer, or the typical firm).
More technically, an economic model is said to have a representative agent if all agen ...
s" are replaced by agents with diverse, dynamic, and interdependent behavior including
herding
Herding is the act of bringing individual animals together into a group (herd), maintaining the group, and moving the group from place to place—or any combination of those. Herding can refer either to the process of animals forming herds in ...
. ABMs take a "bottom-up" approach and can generate extremely complex and volatile simulated economies. ABMs can represent unstable systems with crashes and booms that develop out of non-
linear
Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
(disproportionate) responses to proportionally small changes.
A July 2010 article in ''
The Economist
''The Economist'' is a British weekly newspaper printed in demitab format and published digitally. It focuses on current affairs, international business, politics, technology, and culture. Based in London, the newspaper is owned by The Eco ...
'' looked at ABMs as alternatives to
DSGE models.
The journal ''
Nature
Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
'' also encouraged agent-based modeling with an editorial that suggested ABMs can do a better job of representing financial markets and other economic complexities than standard models along with an essay by
J. Doyne Farmer
J. Doyne Farmer (born 22 June 1952) is an American complex systems scientist and entrepreneur with interests in chaos theory, complexity and econophysics. He is Baillie Gifford Professor of Mathematics at Oxford University, where he is also Dir ...
and Duncan Foley that argued ABMs could fulfill both the desires of Keynes to represent a complex economy and of Robert Lucas to construct models based on microfoundations. Farmer and Foley pointed to progress that has been made using ABMs to model parts of an economy, but argued for the creation of a very large model that incorporates low level models. By modeling a complex system of analysts based on three distinct behavioral profiles – imitating, anti-imitating, and indifferent – financial markets were simulated to high accuracy. Results showed a correlation between network morphology and the stock market index. However, the ABM approach has been criticized for its lack of robustness between models, where similar models can yield very different results.
ABMs have been deployed in architecture and urban planning to evaluate design and to simulate pedestrian flow in the urban environment and the examination of public policy applications to land-use. There is also a growing field of socio-economic analysis of infrastructure investment impact using ABM's ability to discern systemic impacts upon a socio-economic network. Heterogeneity and dynamics can be easily built in ABM models to address wealth inequality and social mobility.
In water management
ABMs have also been applied in water resources planning and management, particularly for exploring, simulating, and predicting the performance of infrastructure design and policy decisions, and in assessing the value of cooperation and information exchange in large water resources systems.
Organizational ABM: agent-directed simulation
The agent-directed simulation (ADS) metaphor distinguishes between two categories, namely "Systems for Agents" and "Agents for Systems." Systems for Agents (sometimes referred to as agents systems) are systems implementing agents for the use in engineering, human and social dynamics, military applications, and others. Agents for Systems are divided in two subcategories. Agent-supported systems deal with the use of agents as a support facility to enable computer assistance in problem solving or enhancing cognitive capabilities. Agent-based systems focus on the use of agents for the generation of model behavior in a system evaluation (system studies and analyses).
Self-driving cars
Hallerbach et al. discussed the application of agent-based approaches for the development and validation of automated driving systems via a digital twin of the vehicle-under-test and microscopic traffic simulation based on independent agents.
Waymo
Waymo LLC, formerly known as the Google self-driving car project, is an American autonomous driving technology company headquartered in Mountain View, California. It is a subsidiary of Alphabet Inc, the parent company of Google.
Waymo oper ...
has created a multi-agent simulation environment Carcraft to test algorithms for
self-driving car
A self-driving car, also known as an autonomous car, driver-less car, or robotic car (robo-car), is a car that is capable of traveling without human input.Xie, S.; Hu, J.; Bhowmick, P.; Ding, Z.; Arvin, F.,Distributed Motion Planning for S ...
s. It simulates traffic interactions between human drivers, pedestrians and automated vehicles. People's behavior is imitated by artificial agents based on data of real human behavior. The basic idea of using agent-based modeling to understand self-driving cars was discussed as early as 2003.
Implementation
Many
ABM frameworks are designed for serial
von-Neumann computer architectures, limiting the speed and scalability of implemented models. Since emergent behavior in large-scale ABMs is dependent of population size,
scalability restrictions may hinder model validation. Such limitations have mainly been addressed using
distributed computing
A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. Distributed computing is a field of computer sci ...
, with frameworks such as Repast HPC specifically dedicated to these type of implementations. While such approaches map well to
cluster
may refer to:
Science and technology Astronomy
* Cluster (spacecraft), constellation of four European Space Agency spacecraft
* Asteroid cluster, a small asteroid family
* Cluster II (spacecraft), a European Space Agency mission to study t ...
and
supercomputer architectures, issues related to communication and synchronization, as well as deployment complexity, remain potential obstacles for their widespread adoption.
A recent development is the use of data-parallel algorithms on Graphics Processing Units
GPU
A graphics processing unit (GPU) is a specialized electronic circuit designed to manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded systems, mobi ...
s for ABM simulation.
The extreme memory bandwidth combined with the sheer number crunching power of multi-processor GPUs has enabled simulation of millions of agents at tens of frames per second.
Integration with other modeling forms
Since Agent-Based Modeling is more of a modeling framework than a particular piece of software or platform, it has often been used in conjunction with other modeling forms. For instance, agent-based models have also been combined with
Geographic Information Systems (GIS). This provides a useful combination where the ABM serves as a process model and the GIS system can provide a model of pattern. Similarly,
Social Network Analysis
Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. It characterizes networked structures in terms of ''nodes'' (individual actors, people, or things within the network) ...
(SNA) tools and agent-based models are sometimes integrated, where the ABM is used to simulate the dynamics on the network while the SNA tool models and analyzes the network of interactions.
Verification and validation
Verification and validation
Verification and validation (also abbreviated as V&V) are independent procedures that are used together for checking that a product, service, or system meets requirements and specifications and that it fulfills its intended purpose. These are ...
(V&V) of simulation models is extremely important. Verification involves making sure the implemented model matches the conceptual model, whereas validation ensures that the implemented model has some relationship to the real-world. Face validation, sensitivity analysis, calibration, and statistical validation are different aspects of validation. A discrete-event simulation framework approach for the validation of agent-based systems has been proposed. A comprehensive resource on empirical validation of agent-based models can be found here.
As an example of V&V technique, consider VOMAS (virtual overlay multi-agent system), a software engineering based approach, where a virtual overlay multi-agent system is developed alongside the agent-based model. Muazi et al. also provide an example of using VOMAS for verification and validation of a forest fire simulation model. Another software engineering method, i.e.
Test-Driven Development
Test-driven development (TDD) is a software development process relying on software requirements being converted to test cases before software is fully developed, and tracking all software development by repeatedly testing the software against al ...
has been adapted to for agent-based model validation.
This approach has another advantage that allows an automatic validation using unit test tools.
See also
*
Agent-based computational economics
Agent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. ...
*
Agent-based model in biology
Agent-based models have many applications in biology, primarily due to the characteristics of the modeling method. Agent-based modeling is a rule-based, computational modeling methodology that focuses on rules and interactions among the individual ...
*
Agent-based social simulation (ABSS)
*
Artificial society
An artificial society is an agent-based computational model for computer simulation in social analysis. It is mostly connected to the themes of complex systems, emergence, the Monte Carlo method, computational sociology, multi-agent systems, a ...
*
Boids
Boids is an artificial life program, developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds. His paper on this topic was published in 1987 in the proceedings of the ACM SIGGRAPH conference. The name "boid" corre ...
*
Comparison of agent-based modeling software
Comparison or comparing is the act of evaluating two or more things by determining the relevant, comparable characteristics of each thing, and then determining which characteristics of each are similar to the other, which are different, and t ...
*
Complex system
*
Complex adaptive system
A complex adaptive system is a system that is '' complex'' in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is '' adaptive'' in that the indiv ...
*
Computational sociology
Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like soc ...
*
Conway's Game of Life
The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no furthe ...
*
Dynamic network analysis
*
Emergence
*
Evolutionary algorithm
In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduct ...
*
Flocking
*
Internet bot
An Internet bot, web robot, robot or simply bot, is a software application that runs automated tasks (scripts) over the Internet, usually with the intent to imitate human activity on the Internet, such as messaging, on a large scale. An Internet b ...
*
Kinetic exchange models of markets
Kinetic exchange models are multi-agent dynamic models inspired by the statistical physics of energy distribution, which try to explain the robust and universal features of income/wealth distributions.
Understanding the distributions of income ...
*
Multi-agent system
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents.Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A.,A Decentralized Cluster Formation Containment Framework f ...
*
Simulated reality
*
Social complexity
In sociology, social complexity is a conceptual framework used in the analysis of society. In the sciences, contemporary definitions of complexity are found in systems theory, wherein the phenomenon being studied has many parts and many possible ...
*
Social simulation
Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, econom ...
*
Sociophysics Social physics or sociophysics is a field of science which uses mathematical tools inspired by physics to understand the behavior of human crowds. In a modern commercial use, it can also refer to the analysis of social phenomena with big data.
Soci ...
*
Software agent
In computer science, a software agent or software AI is a computer program that acts for a user or other program in a relationship of agency, which derives from the Latin ''agere'' (to do): an agreement to act on one's behalf. Such "action on beha ...
*
Swarming behaviour
*
Web-based simulation
*
TOTREP
References
General
*
*
*
* first edition, 1999.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Available online.
*
*
External links
Articles/general information
Agent-based models of social networks, java applets.*
ttp://www-unix.mcs.anl.gov/~leyffer/listn/slides-06/MacalNorth.pdf Introduction to Agent-based Modeling and Simulation Argonne National Laboratory, November 29, 2006.
Agent-based models in Ecology – Using computer models as theoretical tools to analyze complex ecological systemsNetwork for Computational Modeling in the Social and Ecological Sciences' Agent Based Modeling FAQ– Article on the convergence of SOA, BPM and Multi-Agent Technology in the domain of the Enterprise Information Systems. Jose Manuel Gomez Alvarez, Artificial Intelligence,
Technical University of Madrid
The Technical University of Madrid or sometimes called Polytechnic University of Madrid ( es, Universidad Politécnica de Madrid, UPM) is a public university, located in Madrid, Spain. It was founded in 1971 as the result of merging different Te ...
– 2006
Artificial Life FrameworkArticle providing methodology for moving real world human behaviors into a simulation model where agent behaviors are representedAgent-based Modeling Resources an information hub for modelers, methods, and philosophy for agent-based modeling
An Agent-Based Model of the Flash Crash of May 6, 2010, with Policy Implications Tommi A. Vuorenmaa (Valo Research and Trading), Liang Wang (University of Helsinki - Department of Computer Science), October, 2013
Simulation models
Multi-agent Meeting Scheduling System Model by Qasim Siddique*
List of COVID-19 simulation models
{{Swarming
Models of computation
Complex systems theory
Multi-agent systems
Methods in sociology
Artificial life
Simulation