HOME

TheInfoList



OR:

In
mathematical finance Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets. In general, there exist two separate branches of finance that require ...
, a Monte Carlo option model uses
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be determi ...
sAlthough the term 'Monte Carlo method' was coined by
Stanislaw Ulam StanisÅ‚aw Marcin Ulam (; 13 April 1909 â€“ 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapon ...
in the 1940s, some trace such methods to the 18th century French naturalist Buffon, and a question he asked about the results of dropping a needle randomly on a striped floor or table. See
Buffon's needle In mathematics, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. ...
.
to calculate the value of an option with multiple sources of uncertainty or with complicated features. The first application to option pricing was by Phelim Boyle in 1977 (for
European option In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These optionsâ ...
s). In 1996, M. Broadie and P. Glasserman showed how to price
Asian option An Asian option (or ''average value'' option) is a special type of option contract. For Asian options the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European op ...
s by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.


Methodology

In terms of
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
, Monte Carlo valuation relies on risk neutral valuation.Marco Dias
Real Options with Monte Carlo Simulation
/ref> Here the price of the option is its
discounted Discounting is a financial mechanism in which a debtor obtains the right to delay payments to a creditor, for a defined period of time, in exchange for a charge or fee.See "Time Value", "Discount", "Discount Yield", "Compound Interest", "Efficient ...
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
; see
risk neutrality In economics and finance, risk neutral preferences are preferences that are neither risk averse nor risk seeking. A risk neutral party's decisions are not affected by the degree of uncertainty in a set of outcomes, so a risk neutral party is indif ...
and
rational pricing Rational pricing is the assumption in financial economics that asset prices - and hence asset pricing models - will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is usef ...
. The technique applied then, is (1) to generate a large number of possible, but
random In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no :wikt:order, order and does not follow an intelligible pattern or combination. Ind ...
, price paths for the
underlying In finance, a derivative is a contract that ''derives'' its value from the performance of an underlying entity. This underlying entity can be an asset, index, or interest rate, and is often simply called the "underlying". Derivatives can be use ...
(or underlyings) via
simulation A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of Conceptual model, models; the model represents the key characteristics or behaviors of the selected system or proc ...
, and (2) to then calculate the associated
exercise Exercise is a body activity that enhances or maintains physical fitness and overall health and wellness. It is performed for various reasons, to aid growth and improve strength, develop muscles and the cardiovascular system, hone athletic ...
value Value or values may refer to: Ethics and social * Value (ethics) wherein said concept may be construed as treating actions themselves as abstract objects, associating value to them ** Values (Western philosophy) expands the notion of value beyo ...
(i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today. This result is the value of the option.Don Chance
Teaching Note 96-03: Monte Carlo Simulation
/ref> This approach, although relatively straightforward, allows for increasing complexity: * An option on equity may be modelled with one source of uncertainty: the price of the underlying
stock In finance, stock (also capital stock) consists of all the shares by which ownership of a corporation or company is divided.Longman Business English Dictionary: "stock - ''especially AmE'' one of the shares into which ownership of a company ...
in question. Here the price of the
underlying instrument In finance, a derivative is a contract that ''derives'' its value from the performance of an underlying entity. This underlying entity can be an asset, index, or interest rate, and is often simply called the "underlying". Derivatives can be use ...
\ S_t \, is usually modelled such that it follows a
geometric Brownian motion A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It ...
with constant drift \mu \, and volatility \sigma \,. So: dS_t = \mu S_t\,dt + \sigma S_t\,dW_t \, , where dW_t \, is found via a
random sampling In statistics, quality assurance, and survey methodology, sampling is the selection of a subset (a statistical sample) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt ...
from a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
; see
further Further or Furthur may refer to: * ''Furthur'' (bus), the Merry Pranksters' psychedelic bus * Further (band), a 1990s American indie rock band * Furthur (band), a band formed in 2009 by Bob Weir and Phil Lesh * ''Further'' (The Chemical Brothers a ...
under Black–Scholes. Since the underlying random process is the same, for enough price paths, the value of a
european option In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These optionsâ ...
here should be the same as under Black–Scholes. More generally though, simulation is employed for path dependent
exotic derivatives An exotic derivative, in finance, is a derivative which is more complex than commonly traded "vanilla" products. This complexity usually relates to determination of payoff; see option style. The category may also include derivatives with a non-s ...
, such as
Asian options An Asian option (or ''average value'' option) is a special type of option contract. For Asian options the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European o ...
. * In other cases, the source of uncertainty may be at a remove. For example, for
bond option In finance, a bond option is an option to buy or sell a bond at a certain price on or before the option expiry date. These instruments are typically traded OTC. *A European bond option is an option to buy or sell a bond at a certain date in futur ...
s the underlying is a
bond Bond or bonds may refer to: Common meanings * Bond (finance), a type of debt security * Bail bond, a commercial third-party guarantor of surety bonds in the United States * Chemical bond, the attraction of atoms, ions or molecules to form chemica ...
, but the source of uncertainty is the annualized
interest rate An interest rate is the amount of interest due per period, as a proportion of the amount lent, deposited, or borrowed (called the principal sum). The total interest on an amount lent or borrowed depends on the principal sum, the interest rate, th ...
(i.e. the short rate). Here, for each randomly generated
yield curve In finance, the yield curve is a graph which depicts how the yields on debt instruments - such as bonds - vary as a function of their years remaining to maturity. Typically, the graph's horizontal or x-axis is a time line of months or ye ...
we observe a different resultant bond price on the option's exercise date; this bond price is then the input for the determination of the option's payoff. The same approach is used in valuing
swaption A swaption is an option granting its owner the right but not the obligation to enter into an underlying swap. Although options can be traded on a variety of swaps, the term "swaption" typically refers to options on interest rate swaps. Types of ...
s, where the value of the underlying
swap Swap or SWAP may refer to: Finance * Swap (finance), a derivative in which two parties agree to exchange one stream of cash flows against another * Barter Science and technology * Swap (computer programming), exchanging two variables in t ...
is also a function of the evolving interest rate. (Whereas these options are more commonly valued using lattice based models, as above, for path dependent
interest rate derivative In finance, an interest rate derivative (IRD) is a derivative whose payments are determined through calculation techniques where the underlying benchmark product is an interest rate, or set of different interest rates. There are a multitude of diff ...
s – such as
CMOs Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
– simulation is the ''primary'' technique employed.) For the models used to simulate the interest-rate see
further Further or Furthur may refer to: * ''Furthur'' (bus), the Merry Pranksters' psychedelic bus * Further (band), a 1990s American indie rock band * Furthur (band), a band formed in 2009 by Bob Weir and Phil Lesh * ''Further'' (The Chemical Brothers a ...
under
Short-rate model A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written r_t \,. The short rate Under a sh ...
; "to create realistic interest rate simulations" Multi-factor short-rate models are sometimes employed. To apply simulation to IRDs, the analyst must first "calibrate" the model parameters, such that bond prices produced by the model
best fit Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is ...
observed market prices. * Monte Carlo Methods allow for a compounding in the uncertainty.Gonzalo Cortazar, Miguel Gravet and Jorge Urzua
The valuation of multidimensional American real options using the LSM simulation method
/ref> For example, where the underlying is denominated in a foreign currency, an additional source of uncertainty will be the
exchange rate In finance, an exchange rate is the rate at which one currency will be exchanged for another currency. Currencies are most commonly national currencies, but may be sub-national as in the case of Hong Kong or supra-national as in the case of ...
: the underlying price and the exchange rate must be separately simulated and then combined to determine the value of the underlying in the local currency. In all such models,
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
between the underlying sources of risk is also incorporated; see Cholesky decomposition Monte Carlo simulation. Further complications, such as the impact of
commodity prices In economics, a commodity is an economic good, usually a resource, that has full or substantial fungibility: that is, the market treats instances of the good as equivalent or nearly so with no regard to who produced them. The price of a comm ...
or
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reductio ...
on the underlying, can also be introduced. Since simulation can accommodate complex problems of this sort, it is often used in analysing
real options Real options valuation, also often termed real options analysis,Adam Borison (Stanford University)''Real Options Analysis: Where are the Emperor's Clothes?'' (ROV or ROA) applies option valuation techniques to capital budgeting decisions.Campbe ...
where management's decision at any point is a function of multiple underlying variables. * Simulation can similarly be used to value options where the payoff depends on the value of multiple underlying assets such as a
Basket option A basket option is a financial derivative, more specifically an exotic option, whose underlying is a weighted sum or average of different assets that have been grouped together in a basket. A basket option is similar to an index option, where a nu ...
or
Rainbow option Rainbow option is a derivative exposed to two or more sources of uncertainty, as opposed to a simple option that is exposed to one source of uncertainty, such as the price of underlying asset. The name of ''rainbow'' comes from Rubinstein (1991), ...
. Here, correlation between asset returns is likewise incorporated. * As required, Monte Carlo simulation can be used with any type of
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
, including changing distributions: the modeller is not limited to
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
or
log-normal In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal ...
returns; see for example
Datar–Mathews method for real option valuation The Datar–Mathews Method (DM Method) is a method for real options valuation. The method provides an easy way to determine the real option value of a project simply by using the average of positive outcomes for the project. The method can be unders ...
. Additionally, the
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
of the underlying(s) may be specified so as to exhibit
jumps Jumping or leaping is a form of locomotion or movement in which an organism or non-living (e.g., robotic) mechanical system propels itself through the air along a ballistic trajectory. Jumping can be distinguished from running, galloping and o ...
or mean reversion or both; this feature makes simulation the primary valuation method applicable to
energy derivative An energy derivative is a derivative contract based on (derived from) an underlying energy asset, such as natural gas, crude oil, or electricity. Energy derivatives are exotic derivatives and include exchange-traded contracts such as futures and ...
s.Les Clewlow, Chris Strickland and Vince Kaminski
Extending mean-reversion jump diffusion
/ref> Further, some models even allow for (randomly) varying
statistical Statistics (from German: ''Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industria ...
(and other)
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
s of the sources of uncertainty. For example, in models incorporating
stochastic volatility In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name ...
, the volatility of the underlying changes with time; see
Heston model In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset ...
.


Least Square Monte Carlo

Least Square Monte Carlo is a technique for valuing early-exercise options (i.e. Bermudan or
American option In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These optionsâ ...
s). It was first introduced by Jacques Carriere in 1996. It is based on the iteration of a two step procedure: * First, a
backward induction Backward induction is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by examining the last point at which a decision is to be made and then identifying wha ...
process is performed in which a value is recursively assigned to every state at every timestep. The value is defined as the
least squares regression Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and ...
against market price of the option value at that
state State may refer to: Arts, entertainment, and media Literature * ''State Magazine'', a monthly magazine published by the U.S. Department of State * ''The State'' (newspaper), a daily newspaper in Columbia, South Carolina, United States * ''Our S ...
and time (-step). Option value for this regression is defined as the value of exercise possibilities (dependent on market price) plus the value of the timestep value which that exercise would result in (defined in the previous step of the process). * Secondly, when all states are valued for every timestep, the value of the option is calculated by moving through the timesteps and states by making an optimal decision on option exercise at every step on the hand of a price path and the value of the state that would result in. This second step can be done with multiple price paths to add a stochastic effect to the procedure.


Application

As can be seen, Monte Carlo Methods are particularly useful in the valuation of options with multiple sources of uncertainty or with complicated features, which would make them difficult to value through a straightforward Black–Scholes-style or lattice based computation. The technique is thus widely used in valuing path dependent structures like lookback- and
Asian option An Asian option (or ''average value'' option) is a special type of option contract. For Asian options the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European op ...
sRich Tanenbaum
Battle of the Pricing Models: Trees vs Monte Carlo
/ref> and in
real options analysis Real options valuation, also often termed real options analysis,Adam Borison ( Stanford University)''Real Options Analysis: Where are the Emperor's Clothes?'' (ROV or ROA) applies option valuation techniques to capital budgeting decisions.Campb ...
. Additionally, as above, the modeller is not limited as to the probability distribution assumed. Conversely, however, if an
analytical technique Analytical technique is a method used to determine a chemical or physical property of a chemical substance, chemical element, or mixture. There is a wide variety of techniques used for analysis, from simple weighing to advanced techniques using high ...
for valuing the option exists—or even a numeric technique, such as a (modified) pricing tree—Monte Carlo methods will usually be too slow to be competitive. They are, in a sense, a method of last resort; see
further Further or Furthur may refer to: * ''Furthur'' (bus), the Merry Pranksters' psychedelic bus * Further (band), a 1990s American indie rock band * Furthur (band), a band formed in 2009 by Bob Weir and Phil Lesh * ''Further'' (The Chemical Brothers a ...
under
Monte Carlo methods in finance Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the dist ...
. With faster computing capability this computational constraint is less of a concern.


See also

*
Monte Carlo methods in finance Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the dist ...
* Quasi-Monte Carlo methods in finance *
Stochastic modelling (insurance) :''This page is concerned with the stochastic modelling as applied to the insurance industry. For other stochastic modelling applications, please see Monte Carlo method and Stochastic asset models. For mathematical definition, please see Stocha ...
* Stochastic asset model


References

Notes Sources Primary references * * * Bibliography * * * * *


External links

Online tools
Monte Carlo simulated stock price time series and random number generator
(allows for choice of distribution), Steven Whitney Discussion papers and documents
Monte Carlo Simulation
Prof. Don M. Chance,
Louisiana State University Louisiana State University (officially Louisiana State University and Agricultural and Mechanical College, commonly referred to as LSU) is a public land-grant research university in Baton Rouge, Louisiana. The university was founded in 1860 nea ...

Pricing complex options using a simple Monte Carlo Simulation
Peter Fink (reprint at quantnotes.com)
MonteCarlo Simulation in Finance
global-derivatives.com
Monte Carlo Derivative valuationcontd.
Timothy L. Krehbiel,
Oklahoma State University–Stillwater Oklahoma State University–Stillwater (officially Oklahoma State University; informally Oklahoma State, OK State, OSU) is a public land-grant research university in Stillwater, Oklahoma. OSU was founded in 1890 under the Morrill Act. Originall ...

Applications of Monte Carlo Methods in Finance: Option Pricing
Y. Lai and J. Spanier,
Claremont Graduate University The Claremont Graduate University (CGU) is a private, all-graduate research university in Claremont, California. Founded in 1925, CGU is a member of the Claremont Colleges which includes five undergraduate (Pomona College, Claremont McKenna Co ...

Option pricing by simulation
Bernt Arne Ødegaard,
Norwegian School of Management BI Norwegian Business School () is the largest business school in Norway and the second largest in all of Europe. BI has in total four campuses with the main one located in Oslo. The university has 845 employees consisting of an academic staff o ...

Pricing and Hedging Exotic Options with Monte Carlo Simulations
Augusto Perilla, Diana Oancea, Prof. Michael Rockinger,
HEC Lausanne HEC Lausanne (standing for ''Faculté des Hautes études commerciales''), also called the Faculty of Business and Economics of the University of Lausanne, is the affiliated business school of the University of Lausanne. Since 1911, HEC Lausanne h ...

Monte Carlo Method
riskglossary.com {{Derivatives market Monte Carlo methods in finance Options (finance)