Fracture mechanics is the field of
mechanics
Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects r ...
concerned with the study of the propagation of cracks in materials. It uses methods of analytical
solid mechanics
Solid mechanics, also known as mechanics of solids, is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and ot ...
to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to
fracture
Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displa ...
.
Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot be used to describe the state around a crack. Fracture mechanics is used to characterise the loads on a crack, typically using a single parameter to describe the complete loading state at the crack tip. A number of different parameters have been developed. When the plastic zone at the tip of the crack is small relative to the crack length the stress state at the crack tip is the result of
elastic
Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics.
Elastic may also refer to:
Alternative name
* Rubber band, ring-shaped band of rubber used to hold objects togeth ...
forces within the material and is termed linear elastic fracture mechanics (LEFM) and can be characterised using the
stress intensity factor
In fracture mechanics, the stress intensity factor () is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a h ...
. Although the load on a crack can be arbitrary, in 1957
G. Irwin found any state could be reduced to a combination of three independent stress intensity factors:
* Mode I – Opening mode (a
tensile stress
In continuum mechanics, stress is a physical quantity. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as ''force per unit area''. When an object is pulled apart by a force it will cause elonga ...
normal to the plane of the crack),
* Mode II – Sliding mode (a
shear stress
Shear stress, often denoted by (Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the ot ...
acting parallel to the plane of the crack and perpendicular to the crack front), and
* Mode III – Tearing mode (a shear stress acting parallel to the plane of the crack and parallel to the crack front).
When the size of the plastic zone at the crack tip is too large, elastic-plastic fracture mechanics can be used with parameters such as the
J-integral
The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
or the
crack tip opening displacement
Crack tip opening displacement (CTOD) or \delta_\text is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is t ...
.
The characterising parameter describes the state of the crack tip which can then be related to experimental conditions to ensure
similitude
Similitude is a concept applicable to the testing of engineering models. A model is said to have similitude with the real application if the two share geometric similarity, kinematic similarity and dynamic similarity. ''Similarity'' and ''simili ...
. Crack growth occurs when the parameters typically exceed certain critical values. Corrosion may cause a crack to slowly grow when the
stress corrosion
Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC ...
stress intensity threshold is exceeded. Similarly, small flaws may result in crack growth when subjected to cyclic loading. Known as
fatigue
Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
, it was found that for long cracks, the rate of growth is largely governed by the range of the stress intensity
experienced by the crack due to the applied loading. Fast fracture will occur when the stress intensity exceeds the
fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a c ...
of the material. The prediction of crack growth is at the heart of the
damage tolerance
In engineering, damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws ...
mechanical design discipline.
Motivation
The processes of material manufacture, processing, machining, and forming may introduce flaws in a finished mechanical component. Arising from the manufacturing process, interior and surface flaws are found in all metal structures. Not all such flaws are unstable under service conditions. Fracture mechanics is the analysis of flaws to discover those that are safe (that is, do not grow) and those that are liable to propagate as cracks and so cause
failure
Failure is the state or condition of not meeting a desirable or intended objective (goal), objective, and may be viewed as the opposite of Success (concept), success. The criteria for failure depends on context, and may be relative to a parti ...
of the flawed structure. Despite these inherent flaws, it is possible to achieve through
damage tolerance
In engineering, damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws ...
analysis the safe operation of a structure. Fracture mechanics as a subject for critical study has barely been around for a century and thus is relatively new.
Fracture mechanics should attempt to provide quantitative answers to the following questions:
# What is the strength of the component as a function of crack size?
# What crack size can be tolerated under service loading, i.e. what is the maximum permissible crack size?
# How long does it take for a crack to grow from a certain initial size, for example the minimum detectable crack size, to the maximum permissible crack size?
# What is the service life of a structure when a certain pre-existing flaw size (e.g. a manufacturing defect) is assumed to exist?
# During the period available for crack detection how often should the structure be inspected for cracks?
Linear elastic fracture mechanics
Griffith's criterion
Fracture mechanics was developed during World War I by English aeronautical engineer
A. A. Griffith – thus the term Griffith crack – to explain the failure of brittle materials.
[.] Griffith's work was motivated by two contradictory facts:
* The stress needed to fracture bulk
glass
Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) of ...
is around .
* The theoretical stress needed for breaking atomic bonds of glass is approximately .
A theory was needed to reconcile these conflicting observations. Also, experiments on glass fibers that Griffith himself conducted suggested that the fracture stress increases as the fiber diameter decreases. Hence the uniaxial tensile strength, which had been used extensively to predict material failure before Griffith, could not be a specimen-independent material property. Griffith suggested that the low fracture strength observed in experiments, as well as the size-dependence of strength, was due to the presence of microscopic flaws in the bulk material.
To verify the flaw hypothesis, Griffith introduced an artificial flaw in his experimental glass specimens. The artificial flaw was in the form of a surface crack which was much larger than other flaws in a specimen. The experiments showed that the product of the square root of the flaw length (
) and the stress at fracture (
) was nearly constant, which is expressed by the equation:
:
An explanation of this relation in terms of linear elasticity theory is problematic. Linear elasticity theory predicts that stress (and hence the strain) at the tip of a sharp flaw in a linear
elastic
Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics.
Elastic may also refer to:
Alternative name
* Rubber band, ring-shaped band of rubber used to hold objects togeth ...
material is infinite. To avoid that problem, Griffith developed a
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ther ...
approach to explain the relation that he observed.
The growth of a crack, the extension of the surfaces on either side of the crack, requires an increase in the
surface energy
In surface science, surface free energy (also interfacial free energy or surface energy) quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energe ...
. Griffith found an expression for the constant
in terms of the surface energy of the crack by solving the elasticity problem of a finite crack in an elastic plate. Briefly, the approach was:
* Compute the
potential energy
In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Common types of potential energy include the gravitational potentia ...
stored in a perfect specimen under a uniaxial tensile load.
* Fix the boundary so that the applied load does no work and then introduce a crack into the specimen. The crack relaxes the stress and hence reduces the
elastic energy
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, ...
near the crack faces. On the other hand, the crack increases the total surface energy of the specimen.
* Compute the change in the
free energy (surface energy − elastic energy) as a function of the crack length. Failure occurs when the free energy attains a peak value at a critical crack length, beyond which the free energy decreases as the crack length increases, i.e. by causing fracture. Using this procedure, Griffith found that
:
where
is the Young's modulus of the material and
is the surface energy density of the material. Assuming
and
gives excellent agreement of Griffith's predicted fracture stress with experimental results for glass.
For the simple case of a thin rectangular plate with a crack perpendicular to the load, the energy release rate,
, becomes:
:
where
is the applied stress,
is half the crack length, and
is the
Young’s modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied len ...
, which for the case of
plane strain
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally ...
should be divided by the plate stiffness factor
. The strain energy release rate can physically be understood as: ''the rate at which energy is absorbed by growth of the crack''.
However, we also have that:
:
If
≥
, this is the criterion for which the crack will begin to propagate.
For materials highly deformed before crack propagation, the linear elastic fracture mechanics formulation is no longer applicable and an adapted model is necessary to describe the stress and displacement field close to crack tip, such as on
fracture of soft materials.
Irwin's modification
''Griffith's work was largely ignored by the engineering community until the early 1950s. The reasons for this appear to be (a) in the actual structural materials the level of energy needed to cause fracture is orders of magnitude higher than the corresponding surface energy, and (b) in structural materials there are always some inelastic deformations around the crack front that would make the assumption of linear elastic medium with infinite stresses at the crack tip highly unrealistic.'' [E. Erdogan (2000) ''Fracture Mechanics'', International Journal of Solids and Structures, 37, pp. 171–183.]
Griffith's theory provides excellent agreement with experimental data for
brittle
A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Bre ...
materials such as glass. For
ductile
Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
materials such as
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
, although the relation
still holds, the surface energy (''γ'') predicted by Griffith's theory is usually unrealistically high. A group working under
G. R. Irwin
George Rankin Irwin (February 26, 1907 – October 9, 1998) was an American scientist in the field of fracture mechanics and strength of materials. He was internationally known for his study of fracture of materials.
Early life and education ...
[Irwin G (1957), ''Analysis of stresses and strains near the end of a crack traversing a plate'', Journal of Applied Mechanics 24, 361–364.] at the
U.S. Naval Research Laboratory
The United States Naval Research Laboratory (NRL) is the corporate research laboratory for the United States Navy and the United States Marine Corps. It was founded in 1923 and conducts basic scientific research, applied research, technological ...
(NRL) during World War II realized that plasticity must play a significant role in the fracture of ductile materials.
In ductile materials (and even in materials that appear to be brittle), a
plastic
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
zone develops at the tip of the crack. As the applied
load
Load or LOAD may refer to:
Aeronautics and transportation
*Load factor (aeronautics), the ratio of the lift of an aircraft to its weight
*Passenger load factor, the ratio of revenue passenger miles to available seat miles of a particular transpo ...
increases, the plastic zone increases in size until the crack grows and the elastically strained material behind the crack tip unloads. The plastic loading and unloading cycle near the crack tip leads to the
dissipation
In thermodynamics, dissipation is the result of an irreversible process that takes place in homogeneous thermodynamic systems. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a ...
of
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
as
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
. Hence, a dissipative term has to be added to the energy balance relation devised by Griffith for brittle materials. In physical terms, additional energy is needed for crack growth in ductile materials as compared to brittle materials.
Irwin's strategy was to partition the energy into two parts:
* the stored elastic strain energy which is released as a crack grows. This is the thermodynamic driving force for fracture.
* the dissipated energy which includes plastic dissipation and the surface energy (and any other dissipative forces that may be at work). The dissipated energy provides the thermodynamic resistance to fracture. Then the total energy is
:
where
is the surface energy and
is the plastic dissipation (and dissipation from other sources) per unit area of crack growth.
The modified version of Griffith's energy criterion can then be written as
:
For brittle materials such as glass, the surface energy term dominates and
. For ductile materials such as steel, the plastic dissipation term dominates and
. For
polymers
A polymer (; Greek '' poly-'', "many" + ''-mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
close to the
glass transition
The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubb ...
temperature, we have intermediate values of
between 2 and 1000
.
Stress intensity factor
Another significant achievement of Irwin and his colleagues was to find a method of calculating the amount of energy available for fracture in terms of the asymptotic stress and displacement fields around a crack front in a linear elastic solid.
This asymptotic expression for the stress field in mode I loading is related to the stress intensity factor
following:
:
where
are the
Cauchy stresses,
is the distance from the crack tip,
is the angle with respect to the plane of the crack, and
are functions that depend on the crack geometry and loading conditions. Irwin called the quantity
the stress intensity factor. Since the quantity
is dimensionless, the stress intensity factor can be expressed in units of
.
Stress intensity replaced strain energy release rate and a term called
fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a c ...
replaced surface weakness energy. Both of these terms are simply related to the energy terms that Griffith used:
:
and
where
is the mode
stress intensity,
the fracture toughness, and
is Poisson’s ratio.
Fracture occurs when
. For the special case of plane strain deformation,
becomes
and is considered a material property. The subscript
arises because of the
different ways of loading a material to enable a crack to propagate. It refers to so-called "mode
" loading as opposed to mode
or
:
The expression for
will be different for geometries other than the center-cracked infinite plate, as discussed in the article on the stress intensity factor. Consequently, it is necessary to introduce a
dimensionless correction factor,
, in order to characterize the geometry. This correction factor, also often referred to as the ''geometric shape factor'', is given by empirically determined series and accounts for the type and geometry of the crack or notch. We thus have:
:
where
is a function of the crack length and width of sheet given, for a sheet of finite width
containing a through-thickness crack of length
, by:
:
Strain energy release
Irwin was the first to observe that if the size of the plastic zone around a crack is small compared to the size of the crack, the energy required to grow the crack will not be critically dependent on the state of stress (the plastic zone) at the crack tip.
In other words, a purely elastic solution may be used to calculate the amount of energy available for fracture.
The energy release rate for crack growth or ''
strain energy release rate In fracture mechanics, the energy release rate, G, is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture ...
'' may then be calculated as the change in elastic strain energy per unit area of crack growth, i.e.,
:
where ''U'' is the elastic energy of the system and ''a'' is the crack length. Either the load ''P'' or the displacement ''u'' are constant while evaluating the above expressions.
Irwin showed that for a
mode I crack
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics t ...
(opening mode) the strain energy release rate and the stress intensity factor are related by:
:
where ''E'' is the
Young's modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied leng ...
, ''ν'' is
Poisson's ratio
In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Pois ...
, and ''K''
I is the stress intensity factor in mode I. Irwin also showed that the strain energy release rate of a planar crack in a linear elastic body can be expressed in terms of the mode I,
mode II (sliding mode), and
mode III (tearing mode) stress intensity factors for the most general loading conditions.
Next, Irwin adopted the additional assumption that the size and shape of the energy dissipation zone remains approximately constant during brittle fracture. This assumption suggests that the energy needed to create a unit fracture surface is a constant that depends only on the material. This new material property was given the name ''
fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a c ...
'' and designated ''G''
Ic. Today, it is the critical stress intensity factor ''K''
Ic, found in the plane strain condition, which is accepted as the defining property in linear elastic fracture mechanics.
Crack tip plastic zone
In theory the stress at the crack tip where the radius is nearly zero, would tend to infinity. This would be considered a stress singularity, which is not possible in real-world applications. For this reason, in numerical studies in the field of fracture mechanics, it is often appropriate to represent cracks as round tipped
notches, with a geometry dependent region of stress concentration replacing the crack-tip singularity.
In actuality, the stress concentration at the tip of a crack within real materials has been found to have a finite value but larger than the nominal stress applied to the specimen.
Nevertheless, there must be some sort of mechanism or property of the material that prevents such a crack from propagating spontaneously. The assumption is, the plastic deformation at the crack tip effectively blunts the crack tip. This deformation depends primarily on the applied stress in the applicable direction (in most cases, this is the y-direction of a regular Cartesian coordinate system), the crack length, and the geometry of the specimen.
To estimate how this plastic deformation zone extended from the crack tip, Irwin equated the yield strength of the material to the far-field stresses of the y-direction along the crack (x direction) and solved for the effective radius. From this relationship, and assuming that the crack is loaded to the critical stress intensity factor, Irwin developed the following expression for the idealized radius of the zone of plastic deformation at the crack tip:
:
Models of ideal materials have shown that this zone of plasticity is centered at the crack tip. This equation gives the approximate ideal radius of the plastic zone deformation beyond the crack tip, which is useful to many structural scientists because it gives a good estimate of how the material behaves when subjected to stress. In the above equation, the parameters of the stress intensity factor and indicator of material toughness,
, and the yield stress,
, are of importance because they illustrate many things about the material and its properties, as well as about the plastic zone size. For example, if
is high, then it can be deduced that the material is tough, and if
is low, one knows that the material is more ductile. The ratio of these two parameters is important to the radius of the plastic zone. For instance, if
is small, then the squared ratio of
to
is large, which results in a larger plastic radius. This implies that the material can plastically deform, and, therefore, is tough.
This estimate of the size of the plastic zone beyond the crack tip can then be used to more accurately analyze how a material will behave in the presence of a crack.
The same process as described above for a single event loading also applies and to cyclic loading. If a crack is present in a specimen that undergoes cyclic loading, the specimen will plastically deform at the crack tip and delay the crack growth. In the event of an overload or excursion, this model changes slightly to accommodate the sudden increase in stress from that which the material previously experienced. At a sufficiently high load (overload), the crack grows out of the plastic zone that contained it and leaves behind the pocket of the original plastic deformation. Now, assuming that the overload stress is not sufficiently high as to completely fracture the specimen, the crack will undergo further plastic deformation around the new crack tip, enlarging the zone of residual plastic stresses. This process further toughens and prolongs the life of the material because the new plastic zone is larger than what it would be under the usual stress conditions. This allows the material to undergo more cycles of loading. This idea can be illustrated further by th
graphof Aluminum with a center crack undergoing overloading events.
Limitations
But a problem arose for the NRL researchers because naval materials, e.g., ship-plate steel, are not perfectly elastic but undergo significant
plastic deformation
In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
at the tip of a crack. One basic assumption in Irwin's linear elastic fracture mechanics is small scale yielding, the condition that the size of the plastic zone is small compared to the crack length. However, this assumption is quite restrictive for certain types of failure in structural steels though such steels can be prone to brittle fracture, which has led to a number of catastrophic failures.
Linear-elastic fracture mechanics is of limited practical use for structural steels and
Fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a c ...
testing can be expensive.
Elastic–plastic fracture mechanics
Most engineering materials show some nonlinear elastic and inelastic behavior under operating conditions that involve large loads. In such materials the assumptions of linear elastic fracture mechanics may not hold, that is,
* the plastic zone at a crack tip may have a size of the same order of magnitude as the crack size
* the size and shape of the plastic zone may change as the applied load is increased and also as the crack length increases.
Therefore, a more general theory of crack growth is needed for elastic-plastic materials that can account for:
* the local conditions for initial crack growth which include the nucleation, growth, and coalescence of voids (decohesion) at a crack tip.
* a global energy balance criterion for further crack growth and unstable fracture.
CTOD
Historically, the first parameter for the determination of fracture toughness in the elasto-plastic region was the crack tip opening displacement (CTOD) or "opening at the apex of the crack" indicated. This parameter was determined by Wells during the studies of structural steels, which due to the high toughness could not be characterized with the linear elastic fracture mechanics model. He noted that, before the fracture happened, the walls of the crack were leaving and that the crack tip, after fracture, ranged from acute to rounded off due to plastic deformation. In addition, the rounding of the crack tip was more pronounced in steels with superior toughness.
There are a number of alternative definitions of CTOD. In the two most common definitions, CTOD is the displacement at the original crack tip and the 90 degree intercept. The latter definition was suggested by Rice and is commonly used to infer CTOD in finite element models of such. Note that these two definitions are equivalent if the crack tip blunts in a semicircle.
Most laboratory measurements of CTOD have been made on edge-cracked specimens loaded in three-point bending. Early experiments used a flat paddle-shaped gage that was inserted into the crack; as the crack opened, the paddle gage rotated, and an electronic signal was sent to an x-y plotter. This method was inaccurate, however, because it was difficult to reach the crack tip with the paddle gage. Today, the displacement V at the crack mouth is measured, and the CTOD is inferred by assuming the specimen halves are rigid and rotate about a hinge point (the crack tip).
R-curve
An early attempt in the direction of elastic-plastic fracture mechanics was
Irwin's crack extension resistance curve, Crack growth resistance curve or R-curve. This curve acknowledges the fact that the resistance to fracture increases with growing crack size in elastic-plastic materials. The R-curve is a plot of the total energy dissipation rate as a function of the crack size and can be used to examine the processes of slow stable crack growth and unstable fracture. However, the R-curve was not widely used in applications until the early 1970s. The main reasons appear to be that the R-curve depends on the geometry of the specimen and the crack driving force may be difficult to calculate.
J-integral
In the mid-1960s
James R. Rice (then at
Brown University
Brown University is a private research university in Providence, Rhode Island. Brown is the seventh-oldest institution of higher education in the United States, founded in 1764 as the College in the English Colony of Rhode Island and Providenc ...
) and G. P. Cherepanov independently developed a new toughness measure to describe the case where there is sufficient crack-tip deformation that the part no longer obeys the linear-elastic approximation. Rice's analysis, which assumes non-linear elastic (or monotonic
deformation theory
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution ''P'' of a problem to slightly different solutions ''P''ε, where ε is a small number, or a vector of small quantities. The infinitesim ...
plastic
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
) deformation ahead of the crack tip, is designated the
J-integral
The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
.
[.] This analysis is limited to situations where plastic deformation at the crack tip does not extend to the furthest edge of the loaded part. It also demands that the assumed non-linear elastic behavior of the material is a reasonable approximation in shape and magnitude to the real material's load response. The elastic-plastic failure parameter is designated J
Ic and is conventionally converted to K
Ic using the equation below. Also note that the J integral approach reduces to the Griffith theory for linear-elastic behavior.
The mathematical definition of J-integral is as follows:
:
where
:
is an arbitrary path clockwise around the apex of the crack,
:
is the density of strain energy,
:
are the components of the vectors of traction,
:
are the components of the displacement vectors,
:
is an incremental length along the path
, and
:
and
are the stress and strain tensors.
Since engineers became accustomed to using ''K''
Ic to characterise fracture toughness, a relation has been used to reduce ''J''
Ic to it:
:
where
for
plane stress
In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysi ...
and
for plane strain.
Cohesive zone model
When a significant region around a crack tip has undergone plastic deformation, other approaches can be used to determine the possibility of further crack extension and the direction of crack growth and branching. A simple technique that is easily incorporated into numerical calculations is the ''cohesive zone model'' method which is based on concepts proposed independently by
Barenblatt and Dugdale
in the early 1960s. The relationship between the Dugdale-Barenblatt models and Griffith's theory was first discussed by
Willis in 1967.
[.] The equivalence of the two approaches in the context of brittle fracture was shown by
Rice
Rice is the seed of the grass species ''Oryza sativa'' (Asian rice) or less commonly ''Oryza glaberrima
''Oryza glaberrima'', commonly known as African rice, is one of the two domesticated rice species. It was first domesticated and grown i ...
in 1968.
[
]
Transition flaw size
Let a material have a yield strength and a fracture toughness in mode I . Based on fracture mechanics, the material will fail at stress . Based on plasticity, the material will yield when . These curves intersect when . This value of is called as transition flaw size ., and depends on the material properties of the structure. When the