HOME

TheInfoList



OR:

The mode is the value that appears most often in a set of data values. If is a discrete random variable, the mode is the value (i.e, ) at which the probability mass function takes its maximum value. In other words, it is the value that is most likely to be sampled. Like the statistical
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ari ...
and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a
population Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world. Governments typically quantify the size of the resident population within their jurisdiction using ...
. The numerical value of the mode is the same as that of the mean and median in a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu i ...
, and it may be very different in highly skewed distributions. The mode is not necessarily unique to a given discrete distribution, since the probability mass function may take the same maximum value at several points , , etc. The most extreme case occurs in uniform distributions, where all values occur equally frequently. When the probability density function of a continuous distribution has multiple local maxima it is common to refer to all of the local maxima as modes of the distribution. Such a continuous distribution is called multimodal (as opposed to
unimodal In mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. Unimodal probability distribution In statistics, a unimodal pr ...
). A mode of a continuous probability distribution is often considered to be any value at which its
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) c ...
has a locally maximum value, so any peak is a mode. In symmetric
unimodal In mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. Unimodal probability distribution In statistics, a unimodal pr ...
distributions, such as the
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu i ...
, the mean (if defined), median and mode all coincide. For samples, if it is known that they are drawn from a symmetric unimodal distribution, the sample mean can be used as an estimate of the population mode.


Mode of a sample

The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample
, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
is 6. Given the list of data
, 1, 2, 4, 4 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline (t ...
its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal. For a sample from a continuous distribution, such as .935..., 1.211..., 2.430..., 3.668..., 3.874... the concept is unusable in its raw form, since no two values will be exactly the same, so each value will occur precisely once. In order to estimate the mode of the underlying distribution, the usual practice is to discretize the data by assigning frequency values to intervals of equal distance, as for making a histogram, effectively replacing the values by the midpoints of the intervals they are assigned to. The mode is then the value where the histogram reaches its peak. For small or middle-sized samples the outcome of this procedure is sensitive to the choice of interval width if chosen too narrow or too wide; typically one should have a sizable fraction of the data concentrated in a relatively small number of intervals (5 to 10), while the fraction of the data falling outside these intervals is also sizable. An alternate approach is
kernel density estimation In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on '' kernels'' as ...
, which essentially blurs point samples to produce a continuous estimate of the probability density function which can provide an estimate of the mode. The following MATLAB (or Octave) code example computes the mode of a sample: X = sort(x); % x is a column vector dataset indices = find(diff( ; realmax > 0); % indices where repeated values change odeL,i= max (diff(
; indices The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When a ...
); % longest persistence length of repeated values mode = X(indices(i));
The algorithm requires as a first step to sort the sample in ascending order. It then computes the discrete derivative of the sorted list, and finds the indices where this derivative is positive. Next it computes the discrete derivative of this set of indices, locating the maximum of this derivative of indices, and finally evaluates the sorted sample at the point where that maximum occurs, which corresponds to the last member of the stretch of repeated values.


Comparison of mean, median and mode


Use

Unlike mean and median, the concept of mode also makes sense for " nominal data" (i.e., not consisting of numerical values in the case of mean, or even of ordered values in the case of median). For example, taking a sample of Korean family names, one might find that "
Kim Kim or KIM may refer to: Names * Kim (given name) * Kim (surname) ** Kim (Korean surname) *** Kim family (disambiguation), several dynasties **** Kim family (North Korea), the rulers of North Korea since Kim Il-sung in 1948 ** Kim, Vietnamese ...
" occurs more often than any other name. Then "Kim" would be the mode of the sample. In any voting system where a plurality determines victory, a single modal value determines the victor, while a multi-modal outcome would require some tie-breaking procedure to take place. Unlike median, the concept of mode makes sense for any random variable assuming values from a vector space, including the
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s (a one- dimensional vector space) and the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s (which can be considered embedded in the reals). For example, a distribution of points in the plane will typically have a mean and a mode, but the concept of median does not apply. The median makes sense when there is a linear order on the possible values. Generalizations of the concept of median to higher-dimensional spaces are the geometric median and the centerpoint.


Uniqueness and definedness

For some probability distributions, the expected value may be infinite or undefined, but if defined, it is unique. The mean of a (finite) sample is always defined. The median is the value such that the fractions not exceeding it and not falling below it are each at least 1/2. It is not necessarily unique, but never infinite or totally undefined. For a data sample it is the "halfway" value when the list of values is ordered in increasing value, where usually for a list of even length the numerical average is taken of the two values closest to "halfway". Finally, as said before, the mode is not necessarily unique. Certain pathological distributions (for example, the
Cantor distribution The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function. This distribution has neither a probability density function nor a probability mass function, since although its cumulative ...
) have no defined mode at all. For a finite data sample, the mode is one (or more) of the values in the sample.


Properties

Assuming definedness, and for simplicity uniqueness, the following are some of the most interesting properties. * All three measures have the following property: If the random variable (or each value from the sample) is subjected to the linear or affine transformation, which replaces by , so are the mean, median and mode. * Except for extremely small samples, the mode is insensitive to " outliers" (such as occasional, rare, false experimental readings). The median is also very robust in the presence of outliers, while the mean is rather sensitive. * In continuous
unimodal distribution In mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. Unimodal probability distribution In statistics, a unimodal ...
s the median often lies between the mean and the mode, about one third of the way going from mean to mode. In a formula, median ≈ (2 × mean + mode)/3. This rule, due to Karl Pearson, often applies to slightly non-symmetric distributions that resemble a normal distribution, but it is not always true and in general the three statistics can appear in any order. * For unimodal distributions, the mode is within standard deviations of the mean, and the root mean square deviation about the mode is between the standard deviation and twice the standard deviation.


Example for a skewed distribution

An example of a
skewed In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined. For a unimoda ...
distribution is personal wealth: Few people are very rich, but among those some are extremely rich. However, many are rather poor. A well-known class of distributions that can be arbitrarily skewed is given by the
log-normal distribution In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal ...
. It is obtained by transforming a random variable having a normal distribution into random variable . Then the logarithm of random variable is normally distributed, hence the name. Taking the mean μ of to be 0, the median of will be 1, independent of the standard deviation σ of . This is so because has a symmetric distribution, so its median is also 0. The transformation from to is monotonic, and so we find the median for . When has standard deviation σ = 0.25, the distribution of is weakly skewed. Using formulas for the
log-normal distribution In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal ...
, we find: :\begin \text & = e^ & = e^ & \approx 1.032 \\ \text & = e^ & = e^ & \approx 0.939 \\ \text & = e^\mu & = e^0 & = 1 \end Indeed, the median is about one third on the way from mean to mode. When has a larger standard deviation, , the distribution of is strongly skewed. Now :\begin \text & = e^ & = e^ & \approx 1.649 \\ \text & = e^ & = e^ & \approx 0.368 \\ \text & = e^\mu & = e^0 & = 1 \end Here, Pearson's rule of thumb fails.


Van Zwet condition

Van Zwet derived an inequality which provides sufficient conditions for this inequality to hold. The inequality :Mode ≤ Median ≤ Mean holds if :F( Median - ) + F( Median + ) ≥ 1 for all where F() is the
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Ev ...
of the distribution.


Unimodal distributions

It can be shown for a unimodal distribution that the median \tilde and the mean \bar lie within (3/5)1/2 ≈ 0.7746 standard deviations of each other. In symbols, : \frac \le (3/5)^ where , \cdot, is the absolute value. A similar relation holds between the median and the mode: they lie within 31/2 ≈ 1.732 standard deviations of each other: : \frac \le 3^.


History

The term mode originates with Karl Pearson in 1895. Pearson uses the term ''mode'' interchangeably with ''maximum-ordinate''. In a footnote he says, "I have found it convenient to use the term ''mode'' for the abscissa corresponding to the ordinate of maximum frequency."


See also

* Arg max * Central tendency * Descriptive statistics * Moment (mathematics) * Summary statistics * Unimodal function


References


External links

*
A Guide to Understanding & Calculating the Mode
* * Mean, Median and Mode short beginner video fro
Khan Academy
{{DEFAULTSORT:Mode (Statistics) Means Summary statistics Articles with example MATLAB/Octave code