Arg Max
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a Function (mathematics), function output value is Maxima and minima, maximized and minimized, respectively.For clarity, we refer to the input (''x'') as ''points'' and the output (''y'') as ''values;'' compare critical point (mathematics), critical point and critical value (critical point), critical value. While the argument of a function, arguments are defined over the domain of a function, the output is part of its codomain. Definition Given an arbitrary set (mathematics), set a totally ordered set and a function, the \operatorname over some subset S of X is defined by :\operatorname_S f := \underset\, f(x) := \. If S = X or S is clear from the context, then S is often left out, as in \underset\, f(x) := \. In other words, \operatorname is the Set (mathematics), set of points x for which f(x) attains the f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Si Sinc
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures, which is abbreviated BIPM from . The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as products of powers of the base un ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variational Analysis
In mathematics, variational analysis is the combination and extension of methods from convex optimization and the classical calculus of variations to a more general theory. This includes the more general problems of optimization theory, including topics in set-valued analysis, e.g. generalized derivatives. In the Mathematics Subject Classification scheme (MSC2010), the field of "Set-valued and variational analysis" is coded by "49J53". History While this area of mathematics has a long history, the first use of the term "Variational analysis" in this sense was in an eponymous book by R. Tyrrell Rockafellar and Roger J-B Wets. Existence of minima A classical result is that a lower semicontinuous function on a compact set attains its minimum. Results from variational analysis such as Ekeland's variational principle allow us to extend this result of lower semicontinuous functions on non-compact sets provided that the function has a lower bound and at the cost of adding a sm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Preimage
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each element of a given subset A of its domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel (linear Algebra)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maxima and minima, maximizing or minimizing a Function of a real variable, real function by systematically choosing Argument of a function, input values from within an allowed set and computing the Value (mathematics), value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. Optimization problems Opti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mode (statistics)
In statistics, the mode is the value that appears most often in a set of data values. If is a discrete random variable, the mode is the value at which the probability mass function takes its maximum value (i.e., ). In other words, it is the value that is most likely to be sampled. Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population (statistics), population. The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions. The mode is not necessarily unique in a given discrete distribution since the probability mass function may take the same maximum value at several points , , etc. The most extreme case occurs in Uniform distribution (discrete), uniform distributions, where all values occur equally frequently. A mode of a continuous probability distribution is often conside ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Argument Of A Function
In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. For example, the binary function f(x,y) = x^2 + y^2 has two arguments, x and y, in an ordered pair (x, y). The hypergeometric function is an example of a four-argument function. The number of arguments that a function takes is called the ''arity'' of the function. A function that takes a single argument as input, such as f(x) = x^2, is called a unary function. A function of two or more variables is considered to have a domain consisting of ordered pairs or tuples of argument values. The argument of a circular function is an angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R .... The argument of a hyperbolic function is a hyperbolic ang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interval (mathematics)
In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. A real interval can contain neither endpoint, either endpoint, or both endpoints, excluding any endpoint which is infinite. For example, the set of real numbers consisting of , , and all numbers in between is an interval, denoted and called the unit interval; the set of all positive real numbers is an interval, denoted ; the set of all real numbers is an interval, denoted ; and any single real number is an interval, denoted . Intervals are ubiquitous in mathematical analysis. For example, they occur implicitly in the epsilon-delta definition of continuity; the intermediate value theorem asserts that the image of an interval by a continuous function is an interval; integrals of real functions are defined over an interval; etc. Interval ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extreme Value Theorem
In calculus, the extreme value theorem states that if a real-valued function f is continuous on the closed and bounded interval ,b/math>, then f must attain a maximum and a minimum, each at least once. That is, there exist numbers c and d in ,b/math> such that: f(c) \leq f(x) \leq f(d)\quad \forall x\in ,b The extreme value theorem is more specific than the related boundedness theorem, which states merely that a continuous function f on the closed interval ,b/math> is bounded on that interval; that is, there exist real numbers m and M such that: m \le f(x) \le M\quad \forall x \in , b This does not say that M and m are necessarily the maximum and minimum values of f on the interval ,b which is what the extreme value theorem stipulates must also be the case. The extreme value theorem is used to prove Rolle's theorem. In a formulation due to Karl Weierstrass, this theorem states that a continuous function from a non-empty compact space to a subset of the real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arc Tangent
In mathematics, the inverse trigonometric functions (occasionally also called ''antitrigonometric'', ''cyclometric'', or ''arcus'' functions) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry. Notation Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: , , , etc. (This convention is used throughout this article.) This notation arises from the following geometric relationships: when measuring in radians, an angle of radians will correspond to an arc whose length is , where is the radius of the circle. Thus in the unit circle, the cosine of x f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded Function
In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values (its image) is bounded. In other words, there exists a real number M such that :, f(x), \le M for all x in X. A function that is ''not'' bounded is said to be unbounded. If f is real-valued and f(x) \leq A for all x in X, then the function is said to be bounded (from) above by A. If f(x) \geq B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where ''X'' is taken to be the set \mathbb N of natural numbers. Thus a sequence f = (a_0, a_1, a_2, \ldots) is bounded if there exists a real number M such that :, a_n, \le M for every natural number n. The set of all bounded sequences forms the sequence space l^\infty. The definition of boundedness can be generalized to functions f: X \rightarrow Y taking ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Level Set
In mathematics, a level set of a real-valued function of real variables is a set where the function takes on a given constant value , that is: : L_c(f) = \left\~. When the number of independent variables is two, a level set is called a level curve, also known as ''contour line'' or ''isoline''; so a level curve is the set of all real-valued solutions of an equation in two variables and . When , a level set is called a level surface (or '' isosurface''); so a level surface is the set of all real-valued roots of an equation in three variables , and . For higher values of , the level set is a level hypersurface, the set of all real-valued roots of an equation in variables (a higher-dimensional hypersurface). A level set is a special case of a fiber. Alternative names Level sets show up in many applications, often under different names. For example, an implicit curve is a level curve, which is considered independently of its neighbor curves, emphasizing that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |