In
materials science, misorientation is the difference in
crystallographic
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The w ...
orientation between two
crystallite
A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains.
Bacillite is a type of crystallite. It is rodlike with parallel longulites.
Stru ...
s in a polycrystalline material.
In crystalline materials, the orientation of a crystallite is defined by a transformation from a sample
reference frame
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathe ...
(i.e. defined by the direction of a
rolling
Rolling is a type of motion that combines rotation (commonly, of an axially symmetric object) and translation of that object with respect to a surface (either one or the other moves), such that, if ideal conditions exist, the two are in contact ...
or
extrusion
Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex ...
process and two
orthogonal directions) to the local reference frame of the
crystalline lattice
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
, as defined by the basis of the
unit cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
. In the same way, misorientation is the transformation necessary to move from one local crystal frame to some other crystal frame. That is, it is the distance in orientation space between two distinct orientations. If the orientations are specified in terms of
matrices
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
of direction cosines and , then the misorientation operator going from to can be defined as follows:
:
where the term is the reverse operation of , that is, transformation from crystal frame back to the sample frame. This provides an alternate description of misorientation as the successive operation of transforming from the first crystal frame () back to the sample frame and subsequently to the new crystal frame ().
Various methods can be used to represent this transformation operation, such as:
Euler angles, Rodrigues vectors,
axis/angle (where the axis is specified as a crystallographic direction), or
unit quaternions.
Symmetry and misorientation
The effect of
crystal symmetry
In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns t ...
on misorientations is to reduce the fraction of the full orientation space necessary to uniquely represent all possible misorientation relationships. For example, cubic crystals (i.e. FCC) have 24 symmetrically related orientations. Each of these orientations is physically indistinguishable, though mathematically distinct. Therefore, the size of orientation space is reduced by a factor of 24. This defines the fundamental zone (FZ) for cubic symmetries. For the misorientation between two cubic crystallites, each possesses its 24 inherent symmetries. In addition, there exists a switching symmetry, defined by:
:
which recognizes the invariance of misorientation to direction; A→B or B→A. The fraction of the total orientation space in the cubic-cubic fundamental zone for misorientation is then given by:
:
or 1/48 the volume of the cubic fundamental zone. This also has the effect of limiting the maximum unique misorientation angle to 62.8°
Disorientation describes the misorientation with the smallest possible rotation angle out of all symmetrically equivalent misorientations that fall within the FZ (usually specified as having an axis in the standard stereographic triangle for cubics). Calculation of these variants involves application of crystal symmetry operators to each of the orientations during the calculation of misorientation.
where O
crys denotes one of the symmetry operators for the material.
Misorientation distribution
The misorientation distribution (MD) is analogous to the
ODF
The Open Document Format for Office Applications (ODF), also known as OpenDocument, is an open file format for word processing documents, spreadsheets, presentations and graphics and using ZIP-compressed XML files. It was developed wi ...
used in characterizing texture. The MD describes the probability of the misorientation between any two grains falling into a range
around a given misorientation
. While similar to a probability density, the MD is not mathematically the same due to the normalization. The intensity in an MD is given as "multiples of random density" (MRD) with respect to the distribution expected in a material with uniformly distributed misorientations. The MD can be calculated by either series expansion, typically using generalized
spherical harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.
Since the spherical harmonics form ...
, or by a discrete binning scheme, where each data point is assigned to a bin and accumulated.
Graphical representation
Discrete misorientations or the misorientation distribution can be fully described as plots in the Euler angle, axis/angle, or Rodrigues vector space. Unit quaternions, while computationally convenient, do not lend themselves to graphical representation because of their four-dimensional nature. For any of the representations, plots are usually constructed as sections through the fundamental zone; along φ
2 in Euler angles, at increments of rotation angle for axis/angle, and at constant ρ
3 (parallel to <001>) for Rodrigues. Due to the irregular shape of the cubic-cubic FZ, the plots are typically given as sections through the cubic FZ with the more restrictive boundaries overlaid.
Mackenzie plots are a one-dimensional representation of the MD plotting the relative frequency of the misorientation angle, irrespective of the axis. Mackenzie determined the misorientation distribution for a cubic sample with a random texture.
Example of calculating misorientation
The following is an example of the algorithm for determining the axis/angle representation of misorientation between two texture components given as
Euler angles:
:Copper
0,35,45:S3
9,37,63The first step is converting the Euler angle representation, to an
orientation matrix by:
where and represent and respectively. This yields the following orientation matrices:
:
:
The misorientation is then:
:
The axis/angle description (with the axis as a unit vector) is related to the misorientation matrix by:
:
(There are errors in the similar formulae for the components of 'r' given in the book by Randle and Engler (see refs.), which will be corrected in the next edition of their book. The above are the correct versions, note a different form for these equations has to be used if Θ = 180 degrees.)
For the copper—S
3 misorientation given by {{math, Δ''g
AB'', the axis/angle description is 19.5° about
.689,0.623,0.369 which is only 2.3° from <221>. This result is only one of the 1152 symmetrically related possibilities but does specify the misorientation. This can be verified by considering all possible combinations of orientation symmetry (including switching symmetry).
References
*Kocks, U.F., C.N. Tomé, and H.-R. Wenk (1998). ''Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties'', Cambridge University Press.
*Mackenzie, J.K. (1958). ''Second Paper on the Statistics Associated with the Random Disorientation of Cubes'', ''Biometrika'' 45,229.
*Randle, Valerie and Olaf Engler (2000). ''Introduction to Texture Analysis: Macrotexture, Microtexture & Orientation Mapping'', CRC Press.
*Reed-Hill, Robert E. and
Reza Abbaschian (1994). ''Physical Metallurgy Principles (Third Edition)'', PWS.
*Sutton, A.P. and R.W. Balluffi (1995). ''Interfaces in Crystalline Materials'', Clarendon Press.
*G. Zhu, W. Mao and Y. Yu (1997). "Calculation of misorientation distribution between recrystallized grains and deformed matrix", Scripta mater. 42(2000) 37-41.
Symmetry