Microfold cells (or M cells) are found in the
gut-associated lymphoid tissue
Gut-associated lymphoid tissue (GALT) is a component of the mucosa-associated lymphoid tissue (MALT) which works in the immune system to protect the body from invasion in the gut.
Owing to its physiological function in food absorption, the mucosal ...
(GALT) of the
Peyer's patch
Peyer's patches (or aggregated lymphoid nodules) are organized lymphoid follicles, named after the 17th-century Swiss anatomist Johann Conrad Peyer.
* Reprinted as:
* Peyer referred to Peyer's patches as ''plexus'' or ''agmina glandularum'' (c ...
es in the
small intestine
The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through t ...
, and in the
mucosa-associated lymphoid tissue
The mucosa-associated lymphoid tissue (MALT), also called mucosa-associated lymphatic tissue, is a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tr ...
(MALT) of other parts of the
gastrointestinal tract
The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans a ...
. These cells are known to initiate
mucosal immunity
Mucosal immunology is the study of immune system responses that occur at mucosal membranes of the intestines, the urogenital tract, and the respiratory system. The mucous membranes are in constant contact with microorganisms, food, and inhaled ...
responses on the apical membrane of the M cells and allow for transport of
microbes
A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
and particles across the
epithelial cell layer from the gut lumen to the
lamina propria where interactions with immune cells can take place.
Unlike their neighbor cells, M cells have the unique ability to take up
antigen
In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
from the
lumen of the
small intestine
The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through t ...
via
endocytosis
Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. E ...
,
phagocytosis
Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis i ...
, or
transcytosis Transcytosis (also known as cytopempsis) is a type of transcellular transport in which various macromolecules are transported across the interior of a cell. Macromolecules are captured in vesicles on one side of the cell, drawn across the cell, ...
. Antigens are delivered to
antigen-presenting cell
An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using ...
s, such as
dendritic cell
Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
s, and
B lymphocytes
B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or ...
. M cells express the
protease
A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the form ...
cathepsin E, similar to other antigen-presenting cells. This process takes place in a unique pocket-like structure on their basolateral side. Antigens are recognized via expression of cell surface receptors such as glycoprotein-2 (GP2) that detect and specifically bind to bacteria. Cellular prion protein (PrP) is another example of a cell surface receptor on M cells.
M cells lack microvilli but, like other epithelial cells, they are characterized by strong
cell junction
Cell junctions (or intercellular bridges) are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. They also main ...
s. This provides a physical barrier that constitutes an important line of defense between the gut contents and the immune system of the host. Despite the epithelial barrier, some antigens are able to infiltrate the M cell barrier and infect the nearby epithelial cells or enter the gut.
Structure
M cells are distinguished from other intestinal epithelial cells by their morphological differences. They are characterized by their short microvilli or lack of these protrusions on the cell surface. When they present microvilli, they are short, irregular, and present on the apical surface or pocket-like invagination on the basolateral surface of these cells. When they lack microvilli, they are characterized by their microfolds, and hence receive their commonly known name. These cells are far less abundant than
enterocyte
Enterocytes, or intestinal absorptive cells, are simple columnar epithelial cells which line the inner surface of the small and large intestines. A glycocalyx surface coat contains digestive enzymes. Microvilli on the apical surface increase its s ...
s. These cells can also be identified by
cytoskeletal
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is comp ...
and
extracellular matrix
In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide struc ...
components expressed at the edge of cells or on their cell surfaces, such as
actin
Actin is a protein family, family of Globular protein, globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in myofibril, muscle fibrils. It is found in essentially all Eukaryote, eukaryotic cel ...
, villin, cytokeratin, and vimentin.
Development
Factors promoting the differentiation of M cells have yet to be elucidated, but they are thought to develop in response to signals from immune cells found in developing Peyer's patches. B cells have been implicated in the developmental of M cells, since they are also localized in high numbers in the follicular-associated epithelium (FAE). FAE lacking B cell populations results in a decrease in the number of M cell lining the Peyer's patches. Similarly, a human lymphoma cell line is also known to undergo transition from adenocarcinoma cells to M cells.
Though many studies have shown various cell types directing the differentiation of M cells, new research characterizes the molecular pathways that guide M cell differentiation. More recently, through loss-of-function and rescue-phenotype studies,
RANKL
Receptor activator of nuclear factor kappa- ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiati ...
is shown to be a receptor activator of NF-κB ligand and play a role in differentiation of M cells. RANKL is expressed throughout the small intestine, facilitates uptake of pathogens such as Salmonella, and is the most critical factor M cell differentiation. Microbes found on intestinal epithelium are known to direct M cell development. For example, the
type III secretion system
The type III secretion system (T3SS or TTSS), also called the injectisome, is one of the bacterial secretion systems used by bacteria to secrete their effector proteins into the host's cells to promote virulence and colonisation. The T3SS is a n ...
effector protein SopB activates the transition of M cells from
enterocyte
Enterocytes, or intestinal absorptive cells, are simple columnar epithelial cells which line the inner surface of the small and large intestines. A glycocalyx surface coat contains digestive enzymes. Microvilli on the apical surface increase its s ...
s. M cells undergo the differentiation process for up to four days before reaching full maturation. Recent studies have suggested they arise distinctly from the lymphoid and myeloid lineages.
Pathogens can take advantage of cell differentiation pathways in order to invade host cells. This is done by inducing differentiation of enterocytes into M cell type in gut epithelium.
In one case, the SopB effector protein mentioned above is secreted to trigger fast differentiation of enterocytes localized in the FAE by initiation of epithelial to mesenchymal transition in these cells. When SopB activates differentiation of enterocytes, it acts via the activation of the
Wnt/
b-catenin signaling pathway and triggers the RANKL and its receptor, implicated in regulating cell
apoptosis.
Function
M cells do not secrete mucus or digestive
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
s, and have a thinner
glycocalyx
The glycocalyx, also known as the pericellular matrix, is a glycoprotein and glycolipid covering that surrounds the cell membranes of bacteria, epithelial cells, and other cells. In 1970, Martinez-Palomo discovered the cell coating in animal cel ...
, which allows them to have easy access to the intestinal lumen for
endocytosis
Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. E ...
of antigens. The main function of M cells is the selective endocytosis of antigens, and transporting them to intraepithelial
macrophages and lymphocytes, which then migrate to
lymph node
A lymph node, or lymph gland, is a kidney-shaped organ of the lymphatic system and the adaptive immune system. A large number of lymph nodes are linked throughout the body by the lymphatic vessels. They are major sites of lymphocytes that inc ...
s where an immune response can be initiated.
Passive immunity
M cells play a role in
passive immunity Passive immunity is the transfer of active humoral immunity of ready-made antibodies. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta, and it can also be induced artificially, when ...
, or the transfer of active
humoral immunity
Humoral immunity is the aspect of immunity that is mediated by macromolecules - including secreted antibodies, complement proteins, and certain antimicrobial peptides - located in extracellular fluids. Humoral immunity is named so because it ...
during and post pregnancy. Infants rely on
antibodies specific to their mother's intestinal antigens, which move from the mother's gut and enter the breast milk. These antibodies are able to move into the milk supply through the
lymphatic system
The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system, and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphatic or lymphoi ...
. Even though the mechanism of this transport is not fully understood, it is hypothesized that dendritic cells and macrophages play the role of transport vehicles. In females that are not lactating, when M cells recognize antigen in the gut, they stimulate production of many Immunoglobulin A (
IgA) antibodies. These antibodies are released into the gut mucosa,
salivary gland
The salivary glands in mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands ( parotid, submandibular, and sublingual), as well as hundreds of minor salivary glands. Salivar ...
s, and
lymph node
A lymph node, or lymph gland, is a kidney-shaped organ of the lymphatic system and the adaptive immune system. A large number of lym