Membrane processes classifications
Microfiltration (MF)
Microfiltration removes particles higher than 0.08-2 µm and operates within a range of 7-100 kPa. Microfiltration is used to remove residual suspended solids (SS), to remove bacteria in order to condition the water for effective disinfection and as a pre-treatment step for reverse osmosis. Relatively recent developments areUltrafiltration (UF)
Ultrafiltration removes particles higher than 0.005-2 µm and operates within a range of 70-700kPa. Ultrafiltration is used for many of the same applications as microfiltration. Some ultrafiltration membranes have also been used to remove dissolved compounds with high molecular weight, such as proteins and carbohydrates. Also, they can remove viruses and some endotoxins.Nanofiltration (NF)
Nanofiltration is also known as “loose” RO and can reject particles smaller than 0,002 µm. Nanofiltration is used for the removal of selected dissolved constituents from wastewater. NF is primarily developed as a membrane softening process which offers an alternative to chemical softening. Likewise, nanofiltration can be used as a pre-treatment before directed reverse osmosis. The main objectives of NF pre-treatment are: (1). minimize particulate and microbial fouling of the RO membranes by removal of turbidity and bacteria, (2) prevent scaling by removal of the hardness ions, (3) lower the operating pressure of the RO process by reducing the feed-water total dissolved solids (TDS) concentration.Reverse osmosis (RO)
Reverse osmosis is commonly used for desalination. As well, RO is commonly used for the removal of dissolved constituents from wastewater remaining after advanced treatment with microfiltration. RO excludes ions but requires high pressures to produce deionized water (850–7000 kPa). RO is the most widely used desalination technology because of its simplicity of use and relatively low energy costs compared with distillation, which uses technology based on thermal processes. Note that RO membranes remove water constituents at the ionic level. To do so, most current RO systems use a thin-film composite (TFC), mainly consisting of three layers: a polyamide layer, a polysulphone layer and a polyester layer.Nanostructured membranes
An emerging class of membranes rely on nanostructure channels to separate materials at theMembrane configurations
In the membrane field, the term module is used to describe a complete unit composed of the membranes, the pressure support structure, the feed inlet, the outlet permeate and retentate streams, and an overall support structure. The principal types of membrane modules are: :Membrane process operation
The key elements of any membrane process relate to the influence of the following parameters on the overall permeate flux are: *The membrane permeability (k) *The operational driving force per unit membrane area (Trans Membrane Pressure, TMP) *The fouling and subsequent cleaning of the membrane surface.Flux, pressure, permeability
The total permeate flow from a membrane system is given by following equation: : Where Qp is the permeate stream flowrate −1">g·s−1 Fw is the water flux rate −2·s−1">g·m−2·s−1and A is the membrane area 2">2 The permeability (k) −2·bar−1">·s−2·bar−1of a membrane is given by the next equation: : The trans-membrane pressure (TMP) is given by the following expression: : where PTMP is the trans-membrane pressure Pa Pf the inlet pressure of feed stream Pa Pc the pressure of concentrate stream Pa Pp the pressure if permeate stream Pa The rejection (r) could be defined as the number of particles that have been removed from the feedwater. : The corresponding mass balance equations are: : : To control the operation of a membrane process, two modes, concerning the flux and the TMP, can be used. These modes are (1) constant TMP, and (2) constant flux. The operation modes will be affected when the rejected materials and particles in the retentate tend to accumulate in the membrane. At a given TMP, the flux of water through the membrane will decrease and at a given flux, the TMP will increase, reducing the permeability (k). This phenomenon is known asDead-end and cross-flow operation modes
Two operation modes for membranes can be used. These modes are: *Dead-end filtration where all the feed applied to the membrane passes through it, obtaining a permeate. Since there is no concentrate stream, all the particles are retained in the membrane. Raw feed-water is sometimes used to flush the accumulated material from the membrane surface. * Cross-flow filtration where the feed water is pumped with a cross-flow tangential to the membrane and concentrate and permeate streams are obtained. This model implies that for a flow of feed-water across the membrane, only a fraction is converted to permeate product. This parameter is termed "conversion" or "recovery" (S). The recovery will be reduced if the permeate is further used for maintaining processes operation, usually for membrane cleaning. ::: : Filtration leads to an increase in the resistance against the flow. In the case of the dead-end filtration process, the resistance increases according to the thickness of the cake formed on the membrane. As a consequence, the permeability (k) and the flux rapidly decrease, proportionally to the solids concentratioFouling
Fouling can be defined as the potential deposition and accumulation of constituents in the feed stream on the membrane. The loss of RO performance can result from irreversible organic and/or inorganic fouling and chemical degradation of the active membrane layer. Microbiological fouling, generally defined as the consequence of irreversible attachment and growth of bacterial cells on the membrane, is also a common reason for discarding old membranes. A variety of oxidative solutions, cleaning and anti-fouling agents is widely used in desalination plants, and their repetitive and incidental exposure can adversely affect the membranes, generally through the decrease of their rejection efficiencies. Fouling can take place through several physicochemical and biological mechanisms which are related to the increased deposition of solid material onto the membrane surface. The main mechanisms by which fouling can occur, are: * Build-up of constituents of the feedwater on the membrane which causes a resistance to flow. This build-up can be divided into different types: ::::Pore narrowing, which consists of solid material that it has been attached to the interior surface of the pores. ::::Pore blocking occurs when the particles of the feed-water become stuck in the pores of the membrane. ::::Gel/cake layer formation takes places when the solid matter in the feed is larger than the pore sizes of the membrane. *Formation of chemical precipitates known as ''scaling'' *Colonization of the membrane or biofouling takes place when microorganisms grow on the membrane surface.Fouling control and mitigation
Since fouling is an important consideration in the design and operation of membrane systems, as it affects pre-treatment needs, cleaning requirements, operating conditions, cost and performance, it should prevent, and if necessary, removed. Optimizing the operation conditions is important to prevent fouling. However, if fouling has already taken place, it should be removed by using physical or chemical cleaning. Physical cleaning techniques for membrane include membrane relaxation and membrane backwashing. :::*Back-washing or back-flushing consists of pumping the permeate in the reverse direction through the membrane. Back-washing removes successfully most of the reversible fouling caused by pore blocking. Backwashing can also be enhanced by flushing air through the membrane. Backwashing increase the operating costs since energy is required to achieve a pressure suitable for permeate flow reversion. :::*Membrane relaxation consists of pausing the filtration during a period, and thus, there is no need for permeate flow reversion. Relaxation allows filtration to be maintained for a longer period before the chemical cleaning of the membrane. :::*Back pulsing high frequency back pulsing resulting in efficient removal of dirt layer. This method is most commonly used forRecycling of RO membranes
Waste prevention
Once the membrane reaches a significant performance decline it is discarded. Discarded RO membrane modules are currently classified worldwide as inert solid waste and are often disposed of in landfills; although they can also be energetically recovered. However, various efforts have been made over the past decades to avoid this, such as waste prevention, direct reapplication, and ways of recycling. RO membranes have some environmental challenges that must be resolved in order to comply with the circular economy principles. Mainly they have a short service life of 5–10 years. Over the past two decades, the number of RO desalination plants has increased by 70%. The size of these RO plants has also increased significantly, with some reaching a production capacity exceeding 600,000 m3 of water per day. This means a generation of 14,000 tonnes of membrane waste that is landfilled every year. To increment the lifespan of a membrane, different prevention methods are developed: combining the RO process with the pre-treatment process to improve efficiency; developing anti-fouling techniques; and developing suitable procedures for cleaning the membranes. Pre-treatment processes lower the operating costs because of lesser amounts of chemical additives in the saltwater feed and the lower operational maintenance required for the RO system. Four types of fouling are found on RO membranes: (i) Inorganic (salt precipitation), (ii) Organic, (iii) Colloidal (particle deposition in the suspension) (iv) Microbiological (bacteria and fungi). Thereby, an appropriate combination of pre-treatment procedures and chemical dosing, as well as an efficient cleaning plan that tackle these types of fouling, should enable the development of an effective anti-fouling technique. Most plants clean their membranes every week (CEB – Chemically Enhanced Backwash). In addition to this maintenance cleaning, an intensive cleaning (CIP) is recommended, from two to four times annually.Reuse
Reuse of RO membranes include the direct reapplication of modules in other separation processes with less stringent specifications. The conversion from the RO TFC membrane to a porous membrane is possible by degrading the dense layer of polyamide. Converting RO membranes by chemical treatment with different oxidizing solutions are aimed at removing the active layer of the polyamide membrane, intended for reuse in applications such as MF or UF. This causes an extended life of approximately two years.Coutinho de Paula, E. and Amaral, M.C.S. (2017). Extending the life-cycle of membranes: A review. Waste Management & Research, 35(5), 456-470. doi: 10.1177/Recycle
Recycling of materials is a general term that involves physically transforming the material or its components so that they can be regenerated into other useful products. The membrane modules are complex structures, consisting of a number of different polymeric components and, potentially, the individual components can be recovered for other purposes. Plastic solid waste treatment and recycling can be separated into mechanical recycling, chemical recycling and energy recovery. Mechanical recycling characteristics: :::*A first separation of the components of interest is needed. :::*Previous washing to avoid property deterioration during the process. :::*Grinding of the polymeric materials into suitable size (loss of 5% of the material). :::*Possible posterior washing. :::*Melting and extrusion process (loss of 10 % of material). :::*Membrane components than can be recycled (thermoplastics): PP, polyester, etc. :::*Membrane sheets: constructed from a number of different polymers and additives and therefore inherently difficult to accurately and efficiently separate. :::*Main advantage: it displaces virgin plastic production. • Main disadvantages: need to separate all components, large-enough amount of components to be viable.Coutinho de Paula, E. and Amaral, M.C.S. (already referenced) and Lawler, W., Bradford-Hartke, Z., Cran, M.J., Duke, M., Leslie, G.,Ladewig, B.P and Le-Chen, P. (already referenced). Chemical recycling characteristics: :::*Break down the polymers into smaller molecules, using depolymerisation and degradation techniques. :::*Cannot be used with contaminated materials. :::*Chemical recycling processes are tailored for specific materials. :::*Advantage: that heterogeneous polymers with limited use of pre-treatment can be processed. :::*Disadvantage: more expensive and complex than mechanical recycling. :::*Polyester materials (such as in the permeate spacer and components of the membrane sheet) are suitable for chemical recycling processes, and hydrolysis is used to reverse the poly-condensation reaction used to make the polymer, with the addition of water to cause decomposition. Energetic recovery characteristics: :::*Volume reduction by 90–99%, reducing the strain on landfill. :::*Waste incinerators can generally operate from 760 °C to 1100 °C and would therefore be capable of removing all combustible material, with the exception of the residual inorganic filler in the fiberglass casing. :::*Heat energy can be recovered and used for electricity generation or other heat related processes, and can also offset the greenhouse gas emissions from traditional energy. :::*If not properly controlled, can emit greenhouse gases as well as other harmful products.Applications
Distinct features of membranes are responsible for the interest in using them as additional unit operation for separation processes in fluid processes. Some advantages noted include: * Less energy-intensive, since they do not require major phase changes * Do not demand adsorbents or solvents, which may be expensive or difficult to handle * Equipment simplicity and modularity, which facilitates the incorporation of more efficient membranes Membranes are used with pressure as the driving processes in membrane filtration of solutes and inSee also
* Collodion bagReferences
Bibliography
*Metcalf and Eddy. ''Wastewater Engineering, Treatment and Reuse''. McGraw-Hill Book Company, New York. Fourth Edition, 2004. *Paula van den Brink, Frank Vergeldt, Henk Van As, Arie Zwijnenburg, Hardy Temmink, Mark C.M.van Loosdrecht. "Potential of mechanical cleaning of membranes from a membrane bioreactor". ''Journal of membrane science''. 429, 2013. 259-267. *Simon Judd. ''The Membrane Bioreactor Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment''. Elsevier, 2010. {{Membrane transport Fouling Water technology Water treatment Membrane technology