HOME

TheInfoList



OR:

Mechanical advantage is a measure of the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
amplification achieved by using a tool,
mechanical device A machine is a physical system using power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecul ...
or machine system. The device trades off input forces against movement to obtain a desired amplification in the output force. The model for this is the ''law of the
lever A lever is a simple machine consisting of a beam or rigid rod pivoted at a fixed hinge, or '' fulcrum''. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is d ...
.'' Machine components designed to manage forces and movement in this way are called
mechanism Mechanism may refer to: * Mechanism (engineering), rigid bodies connected by joints in order to accomplish a desired force and/or motion transmission *Mechanism (biology), explaining how a feature is created *Mechanism (philosophy), a theory that ...
s. An ideal mechanism transmits power without adding to or subtracting from it. This means the ideal machine does not include a power source, is frictionless, and is constructed from
rigid bodies In physics, a rigid body (also known as a rigid object) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external fo ...
that do not deflect or wear. The performance of a real system relative to this ideal is expressed in terms of efficiency factors that take into account departures from the ideal.


Lever

The lever is a movable bar that pivots on a
fulcrum A fulcrum is the support about which a lever pivots. Fulcrum may also refer to: Companies and organizations * Fulcrum (Anglican think tank), a Church of England think tank * Fulcrum Press, a British publisher of poetry * Fulcrum Wheels, a bicy ...
attached to or positioned on or across a fixed point. The lever operates by applying forces at different distances from the fulcrum, or pivot. The location of the fulcrum determines a lever's
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differentl ...
. Where a lever rotates continuously, it functions as a rotary 2nd-class lever. The motion of the lever's end-point describes a fixed orbit, where mechanical energy can be exchanged. (see a hand-crank as an example.) In modern times, this kind of rotary leverage is widely used; see a (rotary) 2nd-class lever; see gears, pulleys or friction drive, used in a mechanical power transmission scheme. It is common for mechanical advantage to be manipulated in a 'collapsed' form, via the use of more than one gear (a gearset). In such a gearset, gears having smaller radii and less inherent mechanical advantage are used. In order to make use of non-collapsed mechanical advantage, it is necessary to use a 'true length' rotary lever. See, also, the incorporation of mechanical advantage into the design of certain types of electric motors; one design is an 'outrunner'. As the lever pivots on the fulcrum, points farther from this pivot move faster than points closer to the pivot. The
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
into and out of the lever is the same, so must come out the same when calculations are being done. Power is the product of force and velocity, so forces applied to points farther from the pivot must be less than when applied to points closer in. If ''a'' and ''b'' are distances from the fulcrum to points ''A'' and ''B'' and if force ''FA'' applied to ''A'' is the input force and ''FB'' exerted at ''B'' is the output, the ratio of the velocities of points ''A'' and ''B'' is given by ''a''/''b'' so the ratio of the output force to the input force, or mechanical advantage, is given by :\mathit = \frac = \frac. This is the ''law of the lever'', which was proven by
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
using geometric reasoning. It shows that if the distance ''a'' from the fulcrum to where the input force is applied (point ''A'') is greater than the distance ''b'' from fulcrum to where the output force is applied (point ''B''), then the lever amplifies the input force. If the distance from the fulcrum to the input force is less than from the fulcrum to the output force, then the lever reduces the input force. Recognizing the profound implications and practicalities of the law of the lever, Archimedes has been famously attributed the quotation "Give me a place to stand and with a lever I will move the whole world." The use of velocity in the static analysis of a lever is an application of the principle of
virtual work In mechanics, virtual work arises in the application of the ''principle of least action'' to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for ...
.


Speed ratio

The requirement for power input to an ideal mechanism to equal power output provides a simple way to compute mechanical advantage from the input-output speed ratio of the system. The power input to a gear train with a torque ''TA'' applied to the drive pulley which rotates at an angular velocity of ''ωA'' is ''P=TAωA''. Because the power flow is constant, the torque ''TB'' and angular velocity ''ωB'' of the output gear must satisfy the relation :P = T_A \omega_A = T_B \omega_B, \! which yields : \mathit = \frac = \frac. This shows that for an ideal mechanism the input-output speed ratio equals the mechanical advantage of the system. This applies to all mechanical systems ranging from
robot A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be c ...
s to linkages.


Gear trains

Gear teeth are designed so that the number of teeth on a gear is proportional to the radius of its pitch circle, and so that the pitch circles of meshing gears roll on each other without slipping. The speed ratio for a pair of meshing gears can be computed from ratio of the radii of the pitch circles and the ratio of the number of teeth on each gear, its
gear ratio A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission ...
. The velocity ''v'' of the point of contact on the pitch circles is the same on both gears, and is given by : v = r_A \omega_A = r_B \omega_B,\! where input gear ''A'' has radius ''rA'' and meshes with output gear ''B'' of radius ''rB, therefore, : \frac = \frac = \frac. where ''NA'' is the number of teeth on the input gear and ''NB'' is the number of teeth on the output gear. The mechanical advantage of a pair of meshing gears for which the input gear has ''NA'' teeth and the output gear has ''NB'' teeth is given by : \mathit = \frac = \frac. This shows that if the output gear ''G''B has more teeth than the input gear ''G''A, then the gear train ''amplifies'' the input torque. And, if the output gear has fewer teeth than the input gear, then the gear train ''reduces'' the input torque. If the output gear of a gear train rotates more slowly than the input gear, then the gear train is called a ''speed reducer'' (Force multiplier). In this case, because the output gear must have more teeth than the input gear, the speed reducer will amplify the input torque.


Chain and belt drives

Mechanisms consisting of two sprockets connected by a chain, or two pulleys connected by a belt are designed to provide a specific mechanical advantage in power transmission systems. The velocity ''v'' of the chain or belt is the same when in contact with the two sprockets or pulleys: : v = r_A \omega_A = r_B \omega_B,\! where the input sprocket or pulley ''A'' meshes with the chain or belt along the pitch radius ''rA'' and the output sprocket or pulley ''B'' meshes with this chain or belt along the pitch radius ''rB'', therefore : \frac = \frac = \frac. where ''NA'' is the number of teeth on the input sprocket and ''NB'' is the number of teeth on the output sprocket. For a
toothed belt A toothed belt; timing belt; cogged belt; cog belt; or synchronous belt is a flexible belt with teeth moulded onto its inner surface. Toothed belts are usually designed to run over matching toothed pulleys or sprockets. Toothed belts are used in ...
drive, the number of teeth on the sprocket can be used. For friction belt drives the pitch radius of the input and output pulleys must be used. The mechanical advantage of a pair of a chain drive or toothed belt drive with an input sprocket with ''NA'' teeth and the output sprocket has ''NB'' teeth is given by : \mathit = \frac = \frac. The mechanical advantage for friction belt drives is given by : \mathit = \frac = \frac. Chains and belts dissipate power through friction, stretch and wear, which means the power output is actually less than the power input, which means the mechanical advantage of the real system will be less than that calculated for an ideal mechanism. A chain or belt drive can lose as much as 5% of the power through the system in friction heat, deformation and wear, in which case the efficiency of the drive is 95%.


Example: bicycle chain drive

Consider the 18-speed bicycle with 7 in (radius) cranks and 26 in (diameter) wheels. If the sprockets at the crank and at the rear drive wheel are the same size, then the ratio of the output force on the tire to the input force on the pedal can be calculated from the law of the lever to be : \mathit = \frac = \frac = 0.54. Now, assume that the front sprockets have a choice of 28 and 52 teeth, and that the rear sprockets have a choice of 16 and 32 teeth. Using different combinations, we can compute the following speed ratios between the front and rear sprockets The ratio of the force driving the bicycle to the force on the pedal, which is the total mechanical advantage of the bicycle, is the product of the speed ratio (or teeth ratio of output sproket/input sproket) and the crank-wheel lever ratio. Notice that in every case the force on the pedals is greater than the force driving the bicycle forward (in the illustration above, the corresponding backward-directed reaction force on the ground is indicated).


Block and tackle

A
block and tackle A block and tackle or only tackle is a system of two or more pulleys with a rope or cable threaded between them, usually used to lift heavy loads. The pulleys are assembled to form blocks and then blocks are paired so that one is fixed and on ...
is an assembly of a rope and pulleys that is used to lift loads. A number of pulleys are assembled together to form the blocks, one that is fixed and one that moves with the load. The rope is threaded through the pulleys to provide mechanical advantage that amplifies that force applied to the rope.Ned Pelger
ConstructionKnowledge.net
/ref> In order to determine the mechanical advantage of a block and tackle system consider the simple case of a gun tackle, which has a single mounted, or fixed, pulley and a single movable pulley. The rope is threaded around the fixed block and falls down to the moving block where it is threaded around the pulley and brought back up to be knotted to the fixed block. Let ''S'' be the distance from the axle of the fixed block to the end of the rope, which is ''A'' where the input force is applied. Let ''R'' be the distance from the axle of the fixed block to the axle of the moving block, which is ''B'' where the load is applied. The total length of the rope ''L'' can be written as : L = 2R + S + K, \! where ''K'' is the constant length of rope that passes over the pulleys and does not change as the block and tackle moves. The velocities ''V''A and ''V''B of the points ''A'' and ''B'' are related by the constant length of the rope, that is :\dot=2\dot + \dot=0, or : \dot = -2\dot. The negative sign shows that the velocity of the load is opposite to the velocity of the applied force, which means as we pull down on the rope the load moves up. Let ''V''A be positive downwards and ''V''B be positive upwards, so this relationship can be written as the speed ratio : \frac = \frac = 2, where 2 is the number of rope sections supporting the moving block. Let ''F''A be the input force applied at ''A'' the end of the rope, and let ''F''B be the force at ''B'' on the moving block. Like the velocities ''F''A is directed downwards and ''F''B is directed upwards. For an ideal block and tackle system there is no friction in the pulleys and no deflection or wear in the rope, which means the power input by the applied force ''F''A''V''A must equal the power out acting on the load ''F''B''V''B, that is :F_A V_A = F_B V_B.\! The ratio of the output force to the input force is the mechanical advantage of an ideal gun tackle system, :\mathit = \frac = \frac = 2.\! This analysis generalizes to an ideal block and tackle with a moving block supported by ''n'' rope sections, :\mathit = \frac = \frac = n.\! This shows that the force exerted by an ideal block and tackle is ''n'' times the input force, where ''n'' is the number of sections of rope that support the moving block.


Efficiency

Mechanical advantage that is computed using the assumption that no power is lost through deflection, friction and wear of a machine is the maximum performance that can be achieved. For this reason, it is often called the ''ideal mechanical advantage'' (IMA). In operation, deflection, friction and wear will reduce the mechanical advantage. The amount of this reduction from the ideal to the ''actual mechanical advantage'' (AMA) is defined by a factor called ''efficiency'', a quantity which is determined by experimentation. As an example, using a
block and tackle A block and tackle or only tackle is a system of two or more pulleys with a rope or cable threaded between them, usually used to lift heavy loads. The pulleys are assembled to form blocks and then blocks are paired so that one is fixed and on ...
with six rope sections and a load, the operator of an ideal system would be required to pull the rope six feet and exert of force to lift the load one foot. Both the ratios ''F''out / ''F''in and ''V''in / ''V''out show that the IMA is six. For the first ratio, of force input results in of force out. In an actual system, the force out would be less than 600 pounds due to friction in the pulleys. The second ratio also yields a MA of 6 in the ideal case but a smaller value in the practical scenario; it does not properly account for
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
losses such as rope stretch. Subtracting those losses from the IMA or using the first ratio yields the AMA.


Ideal mechanical advantage

The ''ideal mechanical advantage'' (IMA), or ''theoretical mechanical advantage'', is the mechanical advantage of a device with the assumption that its components do not flex, there is no friction, and there is no wear. It is calculated using the physical dimensions of the device and defines the maximum performance the device can achieve. The assumptions of an ideal machine are equivalent to the requirement that the machine does not store or dissipate energy; the power into the machine thus equals the power out. Therefore, the power ''P'' is constant through the machine and force times velocity into the machine equals the force times velocity outthat is, : P = F_\textv_\text= F_\textv_\text. The ideal mechanical advantage is the ratio of the force out of the machine (load) to the force into the machine (effort), or :\mathit = \frac . Applying the constant power relationship yields a formula for this ideal mechanical advantage in terms of the speed ratio: :\mathit = \frac = \frac . The speed ratio of a machine can be calculated from its physical dimensions. The assumption of constant power thus allows use of the speed ratio to determine the maximum value for the mechanical advantage.


Actual mechanical advantage

The ''actual mechanical advantage'' (AMA) is the mechanical advantage determined by physical measurement of the input and output forces. Actual mechanical advantage takes into account energy loss due to deflection, friction, and wear. The AMA of a machine is calculated as the ratio of the measured force output to the measured force input, :\mathit = \frac , where the input and output forces are determined experimentally. The ratio of the experimentally determined mechanical advantage to the ideal mechanical advantage is the mechanical efficiency η of the machine, : \eta =\frac\mathit\mathit.


See also

*
Outline of machines Machine – mechanical system that provides the useful application of power to achieve movement. A machine consists of a power source, or engine, and a mechanism or transmission for the controlled use of this power. The combination of fo ...
*
Compound lever The compound lever is a simple machine operating on the premise that the resistance from one lever in a system of levers acts as effort for the next, and thus the applied force is transferred from one lever to the next. Almost all scales use som ...
*
Simple machine A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refer ...
*
Mechanical advantage device A simple machine that exhibits mechanical advantage is called a mechanical advantage device - e.g.: * Lever: The beam shown is in static equilibrium around the fulcrum. This is due to the moment created by vector force ''"A"'' counterclockwise ( ...
*
Gear ratio A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission ...
*
Chain drive Chain drive is a way of transmitting mechanical power from one place to another. It is often used to convey power to the wheels of a vehicle, particularly bicycles and motorcycles. It is also used in a wide variety of machines besides vehicles. ...
*
Belt (mechanical) A belt is a loop of flexible material used to link two or more rotating shafts mechanically, most often parallel. Belts may be used as a source of motion, to transmit power efficiently or to track relative movement. Belts are looped over pulleys ...
*
Roller chain Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, pri ...
*
Bicycle chain A bicycle chain is a roller chain that transfers power from the pedals to the drive-wheel of a bicycle, thus propelling it. Most bicycle chains are made from plain carbon or alloy steel, but some are nickel-plated to prevent rust, or simpl ...
* Bicycle gearing *
Transmission (mechanics) Propulsion transmission is the mode of transmitting and controlling propulsion power of a machine. The term ''transmission'' properly refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive vehicles), differ ...
* ''
On the Equilibrium of Planes ''On the Equilibrium of Planes'' ( grc, Περὶ ἐπιπέδων ἱσορροπιῶν, translit=perí epipédōn isorropiôn) is a treatise by Archimedes in two volumes. The first book contains a proof of the law of the lever and culminate ...
'' *
Mechanical efficiency In mechanical engineering, mechanical efficiency is a dimensionless number that measures the effectiveness of a mechanism or machine in transforming the power input to the device to power output. A machine is a mechanical linkage in which force ...
*
Wedge A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converti ...


References

*. *{{Citation , last = United States Bureau of Naval Personnel , title = Basic machines and how they work , publisher = Courier Dover Publications , year = 1971 , edition = Revised 1994 , url = https://books.google.com/books?id=yDKzy4rKEg0C , isbn = 978-0-486-21709-3.


External links


Gears and pulleys

Nice demonstration of mechanical advantage

Mechanical advantage — video
Mechanics Mechanisms (engineering) es:Velocidad de transmisión