Mean Absolute Error
   HOME

TheInfoList



OR:

In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of ''Y'' versus ''X'' include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size: \mathrm = \frac =\frac. It is thus an arithmetic average of the absolute errors , e_i, = , y_i - x_i, , where y_i is the prediction and x_i the true value. Note that alternative formulations may include relative frequencies as weight factors. The mean absolute error uses the same scale as the data being measured. This is known as a scale-dependent accuracy measure and therefore cannot be used to make comparisons between series using different scales. The mean absolute error is a common measure of forecast error in
time series analysis In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. ...
, sometimes used in confusion with the more standard definition of mean absolute deviation. The same confusion exists more generally.


Quantity disagreement and allocation disagreement

It is possible to express MAE as the sum of two components: Quantity Disagreement and Allocation Disagreement. Quantity Disagreement is the absolute value of the Mean Error given by: \mathrm = \frac. Allocation Disagreement is MAE minus Quantity Disagreement. It is also possible to identify the types of difference by looking at an (x,y) plot. Quantity difference exists when the average of the X values does not equal the average of the Y values. Allocation difference exists if and only if points reside on both sides of the identity line.


Related measures

The mean absolute error is one of a number of ways of comparing forecasts with their eventual outcomes. Well-established alternatives are the mean absolute scaled error (MASE) and the
mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwe ...
. These all summarize performance in ways that disregard the direction of over- or under- prediction; a measure that does place emphasis on this is the mean signed difference. Where a prediction model is to be fitted using a selected performance measure, in the sense that the
least squares The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the r ...
approach is related to the
mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwe ...
, the equivalent for mean absolute error is
least absolute deviations Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the '' su ...
. MAE is not identical to root-mean square error (RMSE), although some researchers report and interpret it that way. MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y. Furthermore, each error contributes to MAE in proportion to the absolute value of the error. This is in contrast to RMSE which involves squaring the differences, so that a few large differences will increase the RMSE to a greater degree than the MAE. See the example above for an illustration of these differences.


Optimality property

The ''mean absolute error'' of a real variable ''c'' with respect to the
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the p ...
 ''X'' is E(\left, X-c\) Provided that the probability distribution of ''X'' is such that the above expectation exists, then ''m'' is a median of ''X'' if and only if ''m'' is a minimizer of the mean absolute error with respect to ''X''. In particular, ''m'' is a sample median if and only if ''m'' minimizes the arithmetic mean of the absolute deviations. More generally, a median is defined as a minimum of E(, X-c, - , X, ), as discussed at Multivariate median (and specifically at Spatial median). This optimization-based definition of the median is useful in statistical data-analysis, for example, in ''k''-medians clustering.


Proof of optimality

Statement: The classifier minimising \mathbb, y-\hat, is \hat(x)=\text(y, X=x) . Proof: The Loss functions for classification is \begin L &= \mathbb \fracL = \int_^af_(y)\, dy+\int_a^-f_(y)\, dy=0 This means \int_^a f(y)\, dy = \int_a^ f(y)\, dy Hence F_(a)=0.5


See also

*
Least absolute deviations Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the '' su ...
*
Mean absolute percentage error The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula: : ...
* Mean percentage error *
Symmetric mean absolute percentage error Symmetric mean absolute percentage error (SMAPE or sMAPE) is an accuracy measure based on percentage (or relative) errors. It is usually defined as follows: : \text = \frac \sum_^n \frac where ''A't'' is the actual value and ''F't'' is the ...


References

{{DEFAULTSORT:Mean Absolute Error Point estimation performance Statistical deviation and dispersion Time series Errors and residuals>y-a, , X=x\ &= \int_^, y-a, f_(y)\, dy\\ &= \int_^a (a-y)f_(y)\, dy+\int_a^(y-a)f_(y)\, dy\\ \end Differentiating with respect to ''a'' gives \fracL = \int_^af_(y)\, dy+\int_a^-f_(y)\, dy=0 This means \int_^a f(y)\, dy = \int_a^ f(y)\, dy Hence F_(a)=0.5


See also

*
Least absolute deviations Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the '' su ...
*
Mean absolute percentage error The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula: : ...
* Mean percentage error *
Symmetric mean absolute percentage error Symmetric mean absolute percentage error (SMAPE or sMAPE) is an accuracy measure based on percentage (or relative) errors. It is usually defined as follows: : \text = \frac \sum_^n \frac where ''A't'' is the actual value and ''F't'' is the ...


References

{{DEFAULTSORT:Mean Absolute Error Point estimation performance Statistical deviation and dispersion Time series Errors and residuals