Maximum Metric
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Chebyshev distance (or Tchebychev distance), maximum metric, or L metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension. It is named after Pafnuty Chebyshev. It is also known as chessboard distance, since in the game of chess the minimum number of moves needed by a king to go from one square on a
chessboard A chessboard is a used to play chess. It consists of 64 squares, 8 rows by 8 columns, on which the chess pieces are placed. It is square in shape and uses two colours of squares, one light and one dark, in a chequered pattern. During play, the bo ...
to another equals the Chebyshev distance between the centers of the squares, if the squares have side length one, as represented in 2-D spatial coordinates with axes aligned to the edges of the board. For example, the Chebyshev distance between f6 and e2 equals 4.


Definition

The Chebyshev distance between two vectors or points ''x'' and ''y'', with standard coordinates x_i and y_i, respectively, is :D_(x,y) := \max_i(, x_i -y_i, ).\ This equals the limit of the L''p'' metrics: :\lim_ \bigg( \sum_^n \left, x_i - y_i \^p \bigg)^, hence it is also known as the L metric. Mathematically, the Chebyshev distance is a metric induced by the supremum norm or uniform norm. It is an example of an injective metric. In two dimensions, i.e. plane geometry, if the points ''p'' and ''q'' have
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
(x_1,y_1) and (x_2,y_2), their Chebyshev distance is :D_ = \max \left ( \left , x_2 - x_1 \right , , \left , y_2 - y_1 \right , \right ) . Under this metric, a circle of radius ''r'', which is the set of points with Chebyshev distance ''r'' from a center point, is a square whose sides have the length 2''r'' and are parallel to the coordinate axes. On a chess board, where one is using a ''discrete'' Chebyshev distance, rather than a continuous one, the circle of radius ''r'' is a square of side lengths 2''r,'' measuring from the centers of squares, and thus each side contains 2''r''+1 squares; for example, the circle of radius 1 on a chess board is a 3×3 square.


Properties

In one dimension, all L''p'' metrics are equal – they are just the absolute value of the difference. The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length ''r'', oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance. However, this geometric equivalence between L1 and L metrics does not generalize to higher dimensions. A sphere formed using the Chebyshev distance as a metric is a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
with each face perpendicular to one of the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are
self-dual In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a Injective function, one-to-one fashion, often (but not always) by means of an Involution (mathematics), involutio ...
polytopes. Nevertheless, it is true that in all finite-dimensional spaces the L1 and L metrics are mathematically dual to each other. On a grid (such as a chessboard), the points at a Chebyshev distance of 1 of a point are the Moore neighborhood of that point. The Chebyshev distance is the limiting case of the order-p
Minkowski distance The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance. It is named after the German mathematician Hermann Minkowski. ...
, when p reaches
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
.


Applications

The Chebyshev distance is sometimes used in warehouse logistics, as it effectively measures the time an overhead crane takes to move an object (as the crane can move on the x and y axes at the same time but at the same speed along each axis). It is also widely used in electronic Computer-Aided Manufacturing (CAM) applications, in particular, in optimization algorithms for these. Many tools, such as plotting or drilling machines, photoplotter, etc. operating in the plane, are usually controlled by two motors in x and y directions, similar to the overhead cranes.


See also

* King's graph * Uniform norm * Taxicab geometry


References

{{DEFAULTSORT:Chebyshev Distance Metric geometry Mathematical chess problems Distance