HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, mass–energy equivalence is the relationship between
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
in a system's
rest frame In special relativity, the rest frame of a particle is the frame of reference (a coordinate system attached to physical markers) in which the particle is at rest. The rest frame of compound objects (such as a fluid, or a solid made of many vibratin ...
, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's famous formula: E = mc^2. The formula defines the energy of a particle in its rest frame as the product of mass () with the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
squared (). Because the speed of light is a large number in everyday units (approximately ), the formula implies that a small amount of "rest mass", measured when the system is at rest, corresponds to an enormous amount of energy, which is independent of the composition of the
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
. Rest mass, also called
invariant mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
, is a fundamental
physical property A physical property is any property that is measurable, whose value describes a state of a physical system. The changes in the physical properties of a system can be used to describe its changes between momentary states. Physical properties are ...
that is independent of
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
, even at extreme speeds approaching the speed of light. Its value is the same in all
inertial frames of reference In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration ...
.
Massless particle In particle physics, a massless particle is an elementary particle whose invariant mass is zero. There are two known gauge boson massless particles: the photon (carrier of electromagnetism) and the gluon (carrier of the strong force). However, g ...
s such as
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s have zero invariant mass, but massless
free particle In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. I ...
s have both momentum and energy. The equivalence principle implies that when energy is lost in
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s,
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
s, and other
energy transformation Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work or moving, (e.g. Lifting an object) or provides heat. ...
s, the
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
will also lose a corresponding amount of mass. The energy, and mass, can be released to the environment as
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for '' ...
, such as
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
, or as
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
. The principle is fundamental to many fields of physics, including
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: * Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
and
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. Mass–energy equivalence arose from
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
as a
paradox A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
described by the French
polymath A polymath ( el, πολυμαθής, , "having learned much"; la, homo universalis, "universal human") is an individual whose knowledge spans a substantial number of subjects, known to draw on complex bodies of knowledge to solve specific pro ...
Henri Poincaré (1854–1912). Einstein was the first to propose the equivalence of mass and energy as a general principle and a consequence of the symmetries of space and time. The principle first appeared in "Does the inertia of a body depend upon its energy-content?", one of his ''annus mirabilis'' papers, published on 21 November 1905. The formula and its relationship to momentum, as described by the
energy–momentum relation In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is t ...
, were later developed by other physicists.


Description

Mass–energy equivalence states that all objects having
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
, or ''massive objects'', have a corresponding intrinsic energy, even when they are stationary. In the
rest frame In special relativity, the rest frame of a particle is the frame of reference (a coordinate system attached to physical markers) in which the particle is at rest. The rest frame of compound objects (such as a fluid, or a solid made of many vibratin ...
of an object, where by definition it is motionless and so has no
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
, the mass and energy are equivalent and they differ only by a constant, the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
squared (). In
Newtonian mechanics Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
, a motionless body has no
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
, and it may or may not have other amounts of internal stored energy, like
chemical energy Chemical energy is the energy of chemical substances that is released when they undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, Schmidt-Rohr, K. (2018). "How ...
or
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
, in addition to any
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
it may have from its position in a field of force. These energies tend to be much smaller than the mass of the object multiplied by , which is on the order of 1017 
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
s for a mass of one kilogram. Due to this principle, the mass of the atoms that come out of a
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
is less than the mass of the atoms that go in, and the difference in mass shows up as heat and light with the same equivalent energy as the difference. In analyzing these explosions, Einstein's formula can be used with as the energy released and removed, and as the change in mass. In relativity, all the energy that moves with an object (i.e., the energy as measured in the object's rest frame) contributes to the total mass of the body, which measures how much it resists
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
. If an isolated box of ideal mirrors could contain light, the individually massless photons would contribute to the total mass of the box, by the amount equal to their energy divided by . For an observer in the rest frame, removing energy is the same as removing mass and the formula indicates how much mass is lost when energy is removed. In the same way, when any energy is added to an isolated system, the increase in the mass is equal to the added energy divided by .


Mass in special relativity

An object moves at different speeds in different
frames of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathe ...
, depending on the motion of the observer. This implies the kinetic energy, in both Newtonian mechanics and relativity, is 'frame dependent', so that the amount of relativistic energy that an object is measured to have depends on the observer. The ''relativistic mass'' of an object is given by the relativistic energy divided by . Because the relativistic mass is exactly proportional to the relativistic energy, relativistic mass and relativistic energy are nearly
synonym A synonym is a word, morpheme, or phrase that means exactly or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all ...
ous; the only difference between them is the
units Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * Unit (album), ...
. The ''rest mass'' or
invariant mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
of an object is defined as the mass an object has in its rest frame, when it is not moving with respect to the observer. Physicists typically use the term ''mass'', though experiments have shown an object's gravitational mass depends on its total energy and not just its rest mass. The rest mass is the same for all inertial frames, as it is independent of the motion of the observer, it is the smallest possible value of the relativistic mass of the object. Because of the attraction between components of a system, which results in potential energy, the rest mass is almost never
additive Additive may refer to: Mathematics * Additive function, a function in number theory * Additive map, a function that preserves the addition operation * Additive set-functionn see Sigma additivity * Additive category, a preadditive category with f ...
; in general, the mass of an object is not the sum of the masses of its parts. The rest mass of an object is the total energy of all the parts, including kinetic energy, as observed from the center of momentum frame, and potential energy. The masses add up only if the constituents are at rest (as observed from the center of momentum frame) and do not attract or repel, so that they do not have any extra kinetic or potential energy.They can also have a positive kinetic energy and a negative potential energy that exactly cancels. Massless particles are particles with no rest mass, and therefore have no intrinsic energy; their energy is due only to their momentum.


Relativistic mass

Relativistic mass depends on the motion of the object, so that different observers in relative motion see different values for it. The relativistic mass of a moving object is larger than the relativistic mass of an object at rest, because a moving object has kinetic energy. If the object moves slowly, the relativistic mass is nearly equal to the
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
and both are nearly equal to the classical inertial mass (as it appears in
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
). If the object moves quickly, the relativistic mass is greater than the rest mass by an amount equal to the mass associated with the kinetic energy of the object. Massless particles also have relativistic mass derived from their kinetic energy, equal to their relativistic energy divided by , or . The speed of light is one in a system where length and time are measured in
natural units In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge ma ...
and the relativistic mass and energy would be equal in value and dimension. As it is just another name for the energy, the use of the term ''relativistic mass'' is redundant and physicists generally reserve ''mass'' to refer to rest mass, or invariant mass, as opposed to relativistic mass. A consequence of this terminology is that the mass is not conserved in special relativity, whereas the conservation of momentum and
conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
are both fundamental laws.


Conservation of mass and energy

The conservation of energy is a universal principle in physics and holds for any interaction, along with the conservation of momentum. The classical conservation of mass, in contrast, is violated in certain relativistic settings. This concept has been experimentally proven in a number of ways, including the conversion of mass into kinetic energy in nuclear reactions and other interactions between
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s. While modern physics has discarded the expression 'conservation of mass', in older terminology a
relativistic mass The word "mass" has two meanings in special relativity: '' invariant mass'' (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity o ...
can also be defined to be equivalent to the energy of a moving system, allowing for a ''conservation of relativistic mass''. Mass conservation breaks down when the energy associated with the mass of a particle is converted into other forms of energy, such as kinetic energy, thermal energy, or
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for '' ...
. Similarly, kinetic or radiant energy can be used to create particles that have mass, always conserving the total energy and momentum.


Massless particles

Massless particles have zero rest mass. The
Planck–Einstein relation The Planck relationFrench & Taylor (1978), pp. 24, 55.Cohen-Tannoudji, Diu & Laloë (1973/1977), pp. 10–11. (referred to as Planck's energy–frequency relation,Schwinger (2001), p. 203. the Planck relation, Planck equation, and Planck formula, ...
for the energy for
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s is given by the equation , where is the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and is the photon
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
. This frequency and thus the relativistic energy are frame-dependent. If an observer runs away from a photon in the direction the photon travels from a source, and it catches up with the observer, the observer sees it as having less energy than it had at the source. The faster the observer is traveling with regard to the source when the photon catches up, the less energy the photon would be seen to have. As an observer approaches the speed of light with regard to the source, the redshift of the photon increases, according to the
relativistic Doppler effect The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect), when taking into account effects described by the special the ...
. The energy of the photon is reduced and as the wavelength becomes arbitrarily large, the photon's energy approaches zero, due to the massless nature of photons, which does not permit any intrinsic energy.


Composite systems

For closed systems made up of many parts, like an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
, planet, or star, the relativistic energy is given by the sum of the relativistic energies of each of the parts, because energies are additive in these systems. If a system is ''bound'' by attractive forces, and the energy gained in excess of the work done is removed from the system, then mass is lost with this removed energy. The mass of an atomic nucleus is less than the total mass of the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s that make it up. This mass decrease is also equivalent to the energy required to break up the nucleus into individual protons and neutrons. This effect can be understood by looking at the potential energy of the individual components. The individual particles have a force attracting them together, and forcing them apart increases the potential energy of the particles in the same way that lifting an object up on earth does. This energy is equal to the work required to split the particles apart. The mass of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
is slightly less than the sum of its individual masses. For an isolated system of particles moving in different directions, the invariant mass of the system is the analog of the rest mass, and is the same for all observers, even those in relative motion. It is defined as the total energy (divided by ) in the center of momentum frame. The ''center of momentum frame'' is defined so that the system has zero total momentum; the term
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
frame is also sometimes used, where the ''center of mass frame'' is a special case of the center of momentum frame where the center of mass is put at the origin. A simple example of an object with moving parts but zero total momentum is a container of gas. In this case, the mass of the container is given by its total energy (including the kinetic energy of the gas molecules), since the system's total energy and invariant mass are the same in any reference frame where the momentum is zero, and such a reference frame is also the only frame in which the object can be weighed. In a similar way, the theory of special relativity posits that the thermal energy in all objects, including solids, contributes to their total masses, even though this energy is present as the kinetic and potential energies of the atoms in the object, and it (in a similar way to the gas) is not seen in the rest masses of the atoms that make up the object. Similarly, even photons, if trapped in an isolated container, would contribute their energy to the mass of the container. Such extra mass, in theory, could be weighed in the same way as any other type of rest mass, even though individually photons have no rest mass. The property that trapped energy in any form adds weighable mass to systems that have no net momentum is one of the consequences of relativity. It has no counterpart in classical Newtonian physics, where energy never exhibits weighable mass.


Relation to gravity

Physics has two concepts of mass, the gravitational mass and the inertial mass. The gravitational mass is the quantity that determines the strength of the
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenome ...
generated by an object, as well as the gravitational force acting on the object when it is immersed in a gravitational field produced by other bodies. The inertial mass, on the other hand, quantifies how much an object accelerates if a given force is applied to it. The mass–energy equivalence in special relativity refers to the inertial mass. However, already in the context of Newton gravity, the weak
equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (suc ...
is postulated: the gravitational and the inertial mass of every object are the same. Thus, the mass–energy equivalence, combined with the weak equivalence principle, results in the prediction that all forms of energy contribute to the gravitational field generated by an object. This observation is one of the pillars of the
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
. The prediction that all forms of energy interact gravitationally has been subject to experimental tests. One of the first observations testing this prediction, called the
Eddington experiment The Eddington experiment was an observational test of general relativity, organised by the British astronomers Frank Watson Dyson and Arthur Stanley Eddington in 1919. The observations were of the Solar eclipse of May 29, 1919, total solar eclip ...
, was made during the
Solar eclipse of May 29, 1919 A total solar eclipse occurred on Thursday, May 29, 1919. With the duration of totality at maximum eclipse of 6 minutes 50.75 seconds, it was the longest solar eclipse since May 27, 1416. A longer total solar eclipse would later occur on June 8 ...
. During the
solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
, the English
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, natural satellite, moons, comets and galaxy, g ...
and physicist Arthur Eddington observed that the light from stars passing close to the Sun was bent. The effect is due to the gravitational attraction of light by the Sun. The observation confirmed that the energy carried by light indeed is equivalent to a gravitational mass. Another seminal experiment, the
Pound–Rebka experiment The Pound–Rebka experiment was an experiment in which gamma rays were emitted from the top of a tower and measured by a receiver at the bottom of the tower. The purpose of the experiment was to test Albert Einstein's theory of general relativit ...
, was performed in 1960. In this test a beam of light was emitted from the top of a tower and detected at the bottom. The
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of the light detected was higher than the light emitted. This result confirms that the energy of photons increases when they fall in the gravitational field of the Earth. The energy, and therefore the gravitational mass, of photons is proportional to their frequency as stated by the Planck's relation.


Efficiency

In some reactions, matter particles can be destroyed and their associated energy released to the environment as other forms of energy, such as light and heat. One example of such a conversion takes place in elementary particle interactions, where the rest energy is transformed into kinetic energy. Such conversions between types of energy happen in nuclear weapons, in which the protons and neutrons in
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
lose a small fraction of their original mass, though the mass lost is not due to the destruction of any smaller constituents.
Nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
allows a tiny fraction of the energy associated with the mass to be converted into usable energy such as radiation; in the decay of the
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
, for instance, about 0.1% of the mass of the original atom is lost. In theory, it should be possible to destroy matter and convert all of the rest-energy associated with matter into heat and light, but none of the theoretically known methods are practical. One way to harness all the energy associated with mass is to annihilate matter with
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
. Antimatter is rare in our universe, however, and the known mechanisms of production require more usable energy than would be released in annihilation.
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
estimated in 2011 that over a billion times more energy is required to make and store antimatter than could be released in its annihilation. As most of the mass which comprises ordinary objects resides in protons and neutrons, converting all the energy of ordinary matter into more useful forms requires that the protons and neutrons be converted to lighter particles, or particles with no mass at all. In the Standard Model of particle physics, the number of protons plus neutrons is nearly exactly conserved. Despite this,
Gerard 't Hooft Gerardus (Gerard) 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating th ...
showed that there is a process that converts protons and neutrons to
antielectron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides w ...
s and
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s. This is the weak
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
instanton An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. Mo ...
proposed by the physicists
Alexander Belavin Alexander "Sasha" Abramovich Belavin (russian: Алекса́ндр Абра́мович Бела́вин, born 1942) is a Russian physicist, known for his contributions to string theory. He is a professor at the Independent University of Moscow a ...
,
Alexander Markovich Polyakov Alexander is a male given name. The most prominent bearer of the name is Alexander the Great, the king of the Ancient Greek kingdom of Macedonia who created one of the largest empires in ancient history. Variants listed here are Aleksandar, Al ...
,
Albert Schwarz Albert Solomonovich Schwarz (; russian: А. С. Шварц; born June 24, 1934) is a Soviet and American mathematician and a theoretical physicist educated in the Soviet Union and now a professor at the University of California, Davis. Early lif ...
, and Yu. S. Tyupkin. This process, can in principle destroy matter and convert all the energy of matter into neutrinos and usable energy, but it is normally extraordinarily slow. It was later shown that the process occurs rapidly at extremely high temperatures that would only have been reached shortly after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
. Many extensions of the standard model contain
magnetic monopole In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
s, and in some models of grand unification, these monopoles catalyze
proton decay In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov ...
, a process known as the Callan–Rubakov effect. This process would be an efficient mass–energy conversion at ordinary temperatures, but it requires making monopoles and anti-monopoles, whose production is expected to be inefficient. Another method of completely annihilating matter uses the gravitational field of black holes. The British
theoretical physicist Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experime ...
Stephen Hawking theorized it is possible to throw matter into a black hole and use the emitted heat to generate power. According to the theory of
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
, however, larger black holes radiate less than smaller ones, so that usable power can only be produced by small black holes.


Extension for systems in motion

Unlike a system's energy in an inertial frame, the relativistic energy (E_) of a system depends on both the rest mass (m_0) and the total momentum of the system. The extension of Einstein's equation to these systems is given by:Some authors state the expression equivalently as E = \gamma m_0 c^2 where \gamma is the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
.
:\begin E_^2 - , \mathbf , ^2 c^2 &= m_0^2 c^4 \\ E_^2 - (pc)^2 &= (m_0 c^2)^2 \end or \begin E_ = \sqrt \,\! \end where the (pc)^2 term represents the square of the
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
(total vector length) of the various momentum vectors in the system, which reduces to the square of the simple momentum magnitude, if only a single particle is considered. This equation is called the
energy–momentum relation In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is t ...
and reduces to E_ = mc^2 when the momentum term is zero. For photons where m_0 = 0, the equation reduces to E_ = pc.


Low-speed expansion

Using the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
, , the energy–momentum can be rewritten as and expanded as a
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
: :E = m_0 c^2 \left + \frac \left(\frac\right)^2 + \frac \left(\frac\right)^4 + \frac \left(\frac\right)^6 + \ldots \right For speeds much smaller than the speed of light, higher-order terms in this expression get smaller and smaller because is small. For low speeds, all but the first two terms can be ignored: :E \approx m_0 c^2 + \frac m_0 v^2. In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, both the term and the high-speed corrections are ignored. The initial value of the energy is arbitrary, as only the change in energy can be measured, so the term is ignored in classical physics. While the higher-order terms become important at higher speeds, the Newtonian equation is a highly accurate low-speed approximation; adding in the third term yields: :E \approx m_0 c^2 + \fracm_0 v^2 \left(1 + \frac\right). The difference between the two approximations is given by \tfrac, a number very small for everyday objects. In 2018 NASA announced the
Parker Solar Probe The Parker Solar Probe (PSP; previously Solar Probe, Solar Probe Plus or Solar Probe+) is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii ...
was the fastest ever, with a speed of . The difference between the approximations for the Parker Solar Probe in 2018 is \tfrac \approx 3.9 \times 10^, which accounts for an energy correction of four parts per hundred million. The
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
, in contrast, has a standard relative uncertainty of about 2.2 \times 10^.


Applications


Application to nuclear physics

The nuclear binding energy is the minimum energy that is required to disassemble the nucleus of an atom into its component parts. The mass of an atom is less than the sum of the masses of its constituents due to the attraction of the
strong nuclear force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
. The difference between the two masses is called the ''mass defect'' and is related to the binding energy through Einstein's formula. The principle is used in modeling nuclear fission reactions and it implies a great amount of energy can be released by the nuclear fission
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
s used in both
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s and
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced b ...
. A water molecule weighs a little less than two free hydrogen atoms and an oxygen atom. The minuscule mass difference is the energy needed to split the molecule into three individual atoms (divided by ), which was given off as heat when the molecule formed (this heat had mass). Similarly, a stick of dynamite in theory weighs a little bit more than the fragments after the explosion; in this case the mass difference is the energy and heat that is released when the dynamite explodes. Such a change in mass may only happen when the system is open, and the energy and mass are allowed to escape. Thus, if a stick of dynamite is blown up in a hermetically sealed chamber, the mass of the chamber and fragments, the heat, sound, and light would still be equal to the original mass of the chamber and dynamite. If sitting on a scale, the weight and mass would not change. This would in theory also happen even with a nuclear bomb, if it could be kept in an ideal box of infinite strength, which did not rupture or pass
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
. Thus, a 21.5 
kiloton TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. The is a unit of energy defined by that convention to be , which is the approximate energy released in the detonation of a t ...
() nuclear bomb produces about one gram of heat and electromagnetic radiation, but the mass of this energy would not be detectable in an exploded bomb in an ideal box sitting on a scale; instead, the contents of the box would be heated to millions of degrees without changing total mass and weight. If a transparent window passing only electromagnetic radiation were opened in such an ideal box after the explosion, and a beam of X-rays and other lower-energy light allowed to escape the box, it would eventually be found to weigh one gram less than it had before the explosion. This weight loss and mass loss would happen as the box was cooled by this process, to room temperature. However, any surrounding mass that absorbed the X-rays (and other "heat") would ''gain'' this gram of mass from the resulting heating, thus, in this case, the mass "loss" would represent merely its relocation.


Practical examples

Einstein used the
centimeter gram second system of units 330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter. A centimetre (international spelling) or centimeter (American spellin ...
(cgs), but the formula is independent of the system of units. In natural units, the numerical value of the speed of light is set to equal 1, and the formula expresses an equality of numerical values: . In the SI system (expressing the ratio in
joules The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied. ...
per kilogram using the value of in
meters per second The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its prefi ...
): : (≈ 9.0 × 1016 joules per kilogram). So the energy equivalent of one kilogram of mass is *89.9 
petajoules The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
*25.0 billion
kilowatt-hour A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bil ...
s (≈ 25,000 
GW·h A kilowatt-hour ( unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bi ...
) *21.5 trillion
kilocalories The calorie is a unit of energy. For historical reasons, two main definitions of "calorie" are in wide use. The large calorie, food calorie, or kilogram calorie was originally defined as the amount of heat needed to raise the temperature of on ...
(≈ 21 Pcal)Conversions used: 1956 International (Steam) Table (IT) values where one calorie ≡ 4.1868 J and one BTU ≡ 1055.05585262 J. Weapons designers' conversion value of one gram TNT ≡ 1000 calories used. *85.2 trillion BTUs *0.0852 quads or the energy released by combustion of the following: *21 500 
kiloton TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. The is a unit of energy defined by that convention to be , which is the approximate energy released in the detonation of a t ...
s of TNT-equivalent energy (≈ 21 Mt) *
litre The litre (international spelling) or liter (American English spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metre (m3). ...
s or US
gallon The gallon is a unit of volume in imperial units and United States customary units. Three different versions are in current use: *the imperial gallon (imp gal), defined as , which is or was used in the United Kingdom, Ireland, Canada, Austr ...
s of automotive
gasoline Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic co ...
Any time energy is released, the process can be evaluated from an perspective. For instance, the "
Gadget A gadget is a mechanical device or any ingenious article. Gadgets are sometimes referred to as '' gizmos''. History The etymology of the word is disputed. The word first appears as reference to an 18th-century tool in glassmaking that was develo ...
"-style bomb used in the Trinity test and the bombing of Nagasaki had an explosive yield equivalent to 21 kt of TNT. About 1 kg of the approximately 6.15 kg of plutonium in each of these bombs fissioned into lighter elements totaling almost exactly one gram less, after cooling. The electromagnetic radiation and kinetic energy (thermal and blast energy) released in this explosion carried the missing gram of mass. Whenever energy is added to a system, the system gains mass, as shown when the equation is rearranged: * A spring (device), spring's mass increases whenever it is put into compression or tension. Its mass increase arises from the increased potential energy stored within it, which is bound in the stretched chemical (electron) bonds linking the atoms within the spring. * Raising the temperature of an object (increasing its
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
) increases its mass. For example, consider the world's primary mass standard for the kilogram, made of platinum and iridium. If its temperature is allowed to change by 1 °C, its mass changes by 1.5 picograms (1 pg = ).Assuming a 90/10 alloy of Pt/Ir by weight, a of 25.9 for Pt and 25.1 for Ir, a Pt-dominated average of 25.8, 5.134 moles of metal, and 132 J⋅K−1 for the prototype. A variation of ±1.5 picograms is much smaller than the uncertainty in the mass of the international prototype, which is ±2 micrograms. * A spinning ball has greater mass than when it is not spinning. Its increase of mass is exactly the equivalent of the mass of Rotational energy, energy of rotation, which is itself the sum of the kinetic energies of all the moving parts of the ball. For example, the Earth itself is more massive due to its rotation, than it would be with no rotation. The rotational energy of the Earth is greater than 1024 Joules, which is over 107 kg.


History

While Einstein was the first to have correctly deduced the mass–energy equivalence formula, he was not the first to have related energy with mass, though nearly all previous authors thought that the energy that contributes to mass comes only from electromagnetic fields. Once discovered, Einstein's formula was initially written in many different notations, and its interpretation and justification was further developed in several steps.


Developments prior to Einstein

Eighteenth century theories on the correlation of mass and energy included that devised by the English scientist Isaac Newton in 1717, who speculated that light particles and matter particles were interconvertible in "Query 30" of the ''Opticks'', where he asks: "Are not the gross bodies and light convertible into one another, and may not bodies receive much of their activity from the particles of light which enter their composition?" Swedish scientist and theologian Emanuel Swedenborg, in his ''The Principia (book), Principia'' of 1734 theorized that all matter is ultimately composed of dimensionless points of "pure and total motion". He described this motion as being without force, direction or speed, but having the potential for force, direction and speed everywhere within it. During the nineteenth century there were several speculative attempts to show that mass and energy were proportional in various Aether theories, ether theories. In 1873 the Russian physicist and mathematician Nikolay Umov pointed out a relation between mass and energy for ether in the form of , where . The writings of the English engineer Samuel Tolver Preston, and a 1903 paper by the Italian industrialist and geologist Olinto De Pretto, presented a mass–energy relation. Italian mathematician and math historian Umberto Bartocci observed that there were only six degrees of separation, three degrees of separation linking De Pretto to Einstein, concluding that Einstein was probably aware of De Pretto's work. Preston and De Pretto, following physicist Georges-Louis Le Sage, imagined that the universe was filled with an Aether (classical element), ether of tiny particles that always move at speed . Each of these particles has a kinetic energy of up to a small numerical factor. The nonrelativistic kinetic energy formula did not always include the traditional factor of , since German polymath Gottfried Leibniz introduced kinetic energy without it, and the is largely conventional in prerelativistic physics. By assuming that every particle has a mass that is the sum of the masses of the ether particles, the authors concluded that all matter contains an amount of kinetic energy either given by or depending on the convention. A particle ether was usually considered unacceptably speculative science at the time, and since these authors did not formulate relativity, their reasoning is completely different from that of Einstein, who used relativity to change frames. In 1905, and independent of Einstein, French polymath Gustave Le Bon speculated that atoms could release large amounts of latent energy, reasoning from an all-encompassing qualitative philosophy of physics.


Electromagnetic mass

There were many attempts in the 19th and the beginning of the 20th century—like those of British physicists J. J. Thomson in 1881 and Oliver Heaviside in 1889, and George Frederick Charles Searle in 1897, German physicists Wilhelm Wien in 1900 and Max Abraham in 1902, and the Dutch physicist Hendrik Antoon Lorentz in 1904—to understand how the mass of a charged object depends on the electrostatic field. This concept was called electromagnetic mass, and was considered as being dependent on velocity and direction as well. Lorentz in 1904 gave the following expressions for longitudinal and transverse electromagnetic mass: :m_=\frac,\quad m_=\frac , where :m_=\frac\frac Another way of deriving a type of electromagnetic mass was based on the concept of radiation pressure. In 1900, French polymath Henri Poincaré associated electromagnetic radiation energy with a "fictitious fluid" having momentum and mass :m_=\frac\,. By that, Poincaré tried to save the center of mass theorem in Lorentz's theory, though his treatment led to radiation paradoxes. Austrian physicist Friedrich Hasenöhrl showed in 1904 that electromagnetic cavity radiation contributes the "apparent mass" :m_=\frac\frac to the cavity's mass. He argued that this implies mass dependence on temperature as well.


Einstein: mass–energy equivalence

Einstein did not write the exact formula in his 1905 Annus Mirabilis Papers, ''Annus Mirabilis'' paper "Does the Inertia of an object Depend Upon Its Energy Content?"; rather, the paper states that if a body gives off the energy in the form of radiation, its mass diminishes by .Here, "radiation" means electromagnetic radiation, or light, and mass means the ordinary Newtonian mass of a slow-moving object. This formulation relates only a change in mass to a change in energy without requiring the absolute relationship. The relationship convinced him that mass and energy can be seen as two names for the same underlying, conserved physical quantity. He has stated that the laws of conservation of energy and conservation of mass are "one and the same". Einstein elaborated in a 1946 essay that "the principle of the conservation of mass… proved inadequate in the face of the special theory of relativity. It was therefore merged with the energy conservation law, conservation principle—just as, about 60 years before, the principle of the conservation of mechanical energy had been combined with the principle of the conservation of heat [thermal energy]. We might say that the principle of the conservation of energy, having previously swallowed up that of the conservation of heat, now proceeded to swallow that of the conservation of mass—and holds the field alone."


Mass–velocity relationship

In developing
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
, Einstein found that the kinetic energy#Relativistic kinetic energy of rigid bodies, kinetic energy of a moving body is :E_k = m_0 c^2( \gamma -1 ) = m_0 c^2\left(\frac - 1\right), with the velocity, the rest mass, and the Lorentz factor. He included the second term on the right to make sure that for small velocities the energy would be the same as in classical mechanics, thus satisfying the correspondence principle: :E_k = \fracm_0 v^2 + \cdots Without this second term, there would be an additional contribution in the energy when the particle is not moving.


Einsteins's view on mass

Einstein, following Lorentz and Abraham, used velocity- and direction-dependent mass concepts in his 1905 electrodynamics paper and in another paper in 1906. In Einstein's first 1905 paper on , he treated as what would now be called the ''rest mass'', and it has been noted that in his later years he did not like the idea of "relativistic mass". In older physics terminology, relativistic energy is used in lieu of relativistic mass and the term "mass" is reserved for the rest mass. Historically, there has been considerable debate over the use of the concept of "relativistic mass" and the connection of "mass" in relativity to "mass" in Newtonian dynamics. One view is that only rest mass is a viable concept and is a property of the particle; while relativistic mass is a conglomeration of particle properties and properties of spacetime. Another view, attributed to Norwegian physicist Kjell Vøyenli, is that the Newtonian concept of mass as a particle property and the relativistic concept of mass have to be viewed as embedded in their own theories and as having no precise connection.


Einstein's 1905 derivation

Already in his relativity paper "On the electrodynamics of moving bodies", Einstein derived the correct expression for the kinetic energy of particles: :E_=mc^\left(\frac-1\right). Now the question remained open as to which formulation applies to bodies at rest. This was tackled by Einstein in his paper "Does the inertia of a body depend upon its energy content?", one of his Annus Mirabilis papers. Here, Einstein used to represent the speed of light in a vacuum and to represent the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
lost by a body in the form of radiation. Consequently, the equation was not originally written as a formula but as a sentence in German saying that "if a body gives off the energy in the form of radiation, its mass diminishes by ." A remark placed above it informed that the equation was approximated by neglecting "magnitudes of fourth and higher orders" of a Series (mathematics), series expansion.See the sentence on the last page 641 of the original German edition, above the equation . See also the sentence above the last equation in the English translation, , and the comment on the symbols used in ''About this edition'' that follows the translation. Einstein used a body emitting two light pulses in opposite directions, having energies of before and after the emission as seen in its rest frame. As seen from a moving frame, this becomes and . Einstein obtained, in modern notation: :\left(H_-E_\right)-\left(H_-E_\right)=E\left(\frac-1\right). He then argued that can only differ from the kinetic energy by an additive constant, which gives :K_-K_=E\left(\frac-1\right). Neglecting effects higher than third order in after a Taylor series expansion of the right side of this yields: :K_-K_=\frac\frac. Einstein concluded that the emission reduces the body's mass by , and that the mass of a body is a measure of its energy content. The correctness of Einstein's 1905 derivation of was criticized by German theoretical physicist Max Planck in 1907, who argued that it is only valid to first approximation. Another criticism was formulated by American physicist Herbert Ives in 1952 and the Israeli physicist Max Jammer in 1961, asserting that Einstein's derivation is based on begging the question. Other scholars, such as American and Chilean philosophers John Stachel and Roberto Torretti, have argued that Ives' criticism was wrong, and that Einstein's derivation was correct. American physics writer Hans Ohanian, in 2008, agreed with Stachel/Torretti's criticism of Ives, though he argued that Einstein's derivation was wrong for other reasons.


Relativistic center-of-mass theorem of 1906

Like Poincaré, Einstein concluded in 1906 that the inertia of electromagnetic energy is a necessary condition for the center-of-mass theorem to hold. On this occasion, Einstein referred to Poincaré's 1900 paper and wrote: "Although the merely formal considerations, which we will need for the proof, are already mostly contained in a work by H. Poincaré2, for the sake of clarity I will not rely on that work." In Einstein's more physical, as opposed to formal or mathematical, point of view, there was no need for fictitious masses. He could avoid the ''perpetual motion'' problem because, on the basis of the mass–energy equivalence, he could show that the transport of inertia that accompanies the emission and absorption of radiation solves the problem. Poincaré's rejection of the principle of action–reaction can be avoided through Einstein's , because mass conservation appears as a special case of the energy conservation law.


Further developments

There were several further developments in the first decade of the twentieth century. In May 1907, Einstein explained that the expression for energy of a moving mass point assumes the simplest form when its expression for the state of rest is chosen to be (where is the mass), which is in agreement with the "principle of the equivalence of mass and energy". In addition, Einstein used the formula , with being the energy of a system of mass points, to describe the energy and mass increase of that system when the velocity of the differently moving mass points is increased. Max Planck rewrote Einstein's mass–energy relationship as in June 1907, where is the pressure and the volume to express the relation between mass, its latent energy, and thermodynamic energy within the body. Subsequently, in October 1907, this was rewritten as and given a quantum interpretation by German physicist Johannes Stark, who assumed its validity and correctness. In December 1907, Einstein expressed the equivalence in the form and concluded: "A mass is equivalent, as regards inertia, to a quantity of energy . […] It appears far more natural to consider every inertial mass as a store of energy." American physical chemists Gilbert N. Lewis and Richard C. Tolman used two variations of the formula in 1909: and , with being the relativistic energy (the energy of an object when the object is moving), is the rest energy (the energy when not moving), is the relativistic mass (the rest mass and the extra mass gained when moving), and is the rest mass. The same relations in different notation were used by Lorentz in 1913 and 1914, though he placed the energy on the left-hand side: and , with being the total energy (rest energy plus kinetic energy) of a moving material point, its rest energy, the relativistic mass, and the invariant mass. In 1911, German physicist Max von Laue gave a more comprehensive proof of from the stress–energy tensor, which was later generalized by German mathematician Felix Klein in 1918. Einstein returned to the topic once again after World War II and this time he wrote in the title of his article intended as an explanation for a general reader by analogy.


Alternative version

An alternative version of Einstein's thought experiment was proposed by American theoretical physicist Fritz Rohrlich in 1990, who based his reasoning on the Doppler effect. Like Einstein, he considered a body at rest with mass . If the body is examined in a frame moving with nonrelativistic velocity , it is no longer at rest and in the moving frame it has momentum . Then he supposed the body emits two pulses of light to the left and to the right, each carrying an equal amount of energy . In its rest frame, the object remains at rest after the emission since the two beams are equal in strength and carry opposite momentum. However, if the same process is considered in a frame that moves with velocity to the left, the pulse moving to the left is redshifted, while the pulse moving to the right is blue shifted. The blue light carries more momentum than the red light, so that the momentum of the light in the moving frame is not balanced: the light is carrying some net momentum to the right. The object has not changed its velocity before or after the emission. Yet in this frame it has lost some right-momentum to the light. The only way it could have lost momentum is by losing mass. This also solves Poincaré's radiation paradox. The velocity is small, so the right-moving light is blueshifted by an amount equal to the nonrelativistic Doppler shift factor . The momentum of the light is its energy divided by , and it is increased by a factor of . So the right-moving light is carrying an extra momentum given by: : \Delta P = . The left-moving light carries a little less momentum, by the same amount . So the total right-momentum in both light pulses is twice . This is the right-momentum that the object lost. : 2\Delta P = v . The momentum of the object in the moving frame after the emission is reduced to this amount: : P' = Mv - 2\Delta P = \left(M - \right)v . So the change in the object's mass is equal to the total energy lost divided by . Since any emission of energy can be carried out by a two-step process, where first the energy is emitted as light and then the light is converted to some other form of energy, any emission of energy is accompanied by a loss of mass. Similarly, by considering absorption, a gain in energy is accompanied by a gain in mass.


Radioactivity and nuclear energy

It was quickly noted after the discovery of radioactivity in 1897, that the total energy due to radioactive processes is about one ''million times'' greater than that involved in any known molecular change, raising the question of where the energy comes from. After eliminating the idea of absorption and emission of some sort of Lesagian ether particles, the existence of a huge amount of latent energy, stored within matter, was proposed by New Zealand physicist Ernest Rutherford and British radiochemist Frederick Soddy in 1903. Rutherford also suggested that this internal energy is stored within normal matter as well. He went on to speculate in 1904: "If it were ever found possible to control at will the rate of disintegration of the radio-elements, an enormous amount of energy could be obtained from a small quantity of matter." Einstein's equation does not explain the large energies released in radioactive decay, but can be used to quantify them. The theoretical explanation for radioactive decay is given by the nuclear forces responsible for holding atoms together, though these forces were still unknown in 1905. The enormous energy released from radioactive decay had previously been measured by Rutherford and was much more easily measured than the small change in the gross mass of materials as a result. Einstein's equation, by theory, can give these energies by measuring mass differences before and after reactions, but in practice, these mass differences in 1905 were still too small to be measured in bulk. Prior to this, the ease of measuring radioactive decay energies with a calorimeter was thought possibly likely to allow measurement of changes in mass difference, as a check on Einstein's equation itself. Einstein mentions in his 1905 paper that mass–energy equivalence might perhaps be tested with radioactive decay, which was known by then to release enough energy to possibly be "weighed," when missing from the system. However, radioactivity seemed to proceed at its own unalterable pace, and even when simple nuclear reactions became possible using proton bombardment, the idea that these great amounts of usable energy could be liberated at will with any practicality, proved difficult to substantiate. Rutherford was reported in 1933 to have declared that this energy could not be exploited efficiently: "Anyone who expects a source of power from the transformation of the atom is talking moonshine." This outlook changed dramatically in 1932 with the discovery of the neutron and its mass, allowing mass differences for single nuclides and their reactions to be calculated directly, and compared with the sum of masses for the particles that made up their composition. In 1933, the energy released from the reaction of lithium-7 plus protons giving rise to two alpha particles, allowed Einstein's equation to be tested to an error of ±0.5%. However, scientists still did not see such reactions as a practical source of power, due to the energy cost of accelerating reaction particles. After the very public demonstration of huge energies released from nuclear fission after the atomic bombings of Hiroshima and Nagasaki in 1945, the equation became directly linked in the public eye with the power and peril of nuclear weapons. The equation was featured on page 2 of the Smyth Report, the official 1945 release by the US government on the development of the atomic bomb, and by 1946 the equation was linked closely enough with Einstein's work that the cover of ''Time (magazine), Time'' magazine prominently featured a picture of Einstein next to an image of a mushroom cloud emblazoned with the equation. Einstein himself had only a minor role in the Manhattan Project: he had Einstein–Szilárd letter, cosigned a letter to the U.S. president in 1939 urging funding for research into atomic energy, warning that an atomic bomb was theoretically possible. The letter persuaded Roosevelt to devote a significant portion of the wartime budget to atomic research. Without a security clearance, Einstein's only scientific contribution was an analysis of an isotope separation method in theoretical terms. It was inconsequential, on account of Einstein not being given sufficient information to fully work on the problem. While is useful for understanding the amount of energy potentially released in a fission reaction, it was not strictly necessary to develop the weapon, once the fission process was known, and its energy measured at 200 MeV (which was directly possible, using a quantitative Geiger counter, at that time). The physicist and Manhattan Project participant Robert Serber noted that somehow "the popular notion took hold long ago that Einstein's theory of relativity, in particular his famous equation , plays some essential role in the theory of fission. Einstein had a part in alerting the United States government to the possibility of building an atomic bomb, but his theory of relativity is not required in discussing fission. The theory of fission is what physicists call a non-relativistic theory, meaning that relativistic effects are too small to affect the dynamics of the fission process significantly." There are other views on the equation's importance to nuclear reactions. In late 1938, the Austrian-Swedish and British physicists Lise Meitner and Otto Robert Frisch—while on a winter walk during which they solved the meaning of Hahn's experimental results and introduced the idea that would be called atomic fission—directly used Einstein's equation to help them understand the quantitative energetics of the reaction that overcame the "surface tension-like" forces that hold the nucleus together, and allowed the fission fragments to separate to a configuration from which their charges could force them into an energetic ''fission''. To do this, they used ''packing fraction'', or nuclear binding energy values for elements. These, together with use of allowed them to realize on the spot that the basic fission process was energetically possible.


Einstein's equation written

According to the Einstein Papers Project at the California Institute of Technology and Hebrew University of Jerusalem, there remain only four known copies of this equation as written by Einstein. One of these is a letter written in German language, German to Ludwik Silberstein, which was in Silberstein's archives, and sold at auction for $1.2 million, RR Auction of Boston, Massachusetts said on May 21, 2021.


See also


Notes


References


External links


Einstein on the Inertia of Energy
– MathPages


Mass and Energy
– Conversations About Science with Theoretical Physicist Matt Strassler
The Equivalence of Mass and Energy
– Entry in the ''Stanford Encyclopedia of Philosophy'' * {{DEFAULTSORT:Mass-Energy Equivalence 1905 introductions 1905 in science 1905 in Germany Albert Einstein Energy (physics) Equations Mass Special relativity