HOME

TheInfoList



OR:

The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles.


Terminology

''Microscopic'' here implies that
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
has to be used to provide an accurate description of the system. ''Many'' can be anywhere from three to infinity (in the case of a practically infinite,
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
or periodic system, such as a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus sometimes separately classified as few-body systems.


Explanation of the problem

In general terms, while the underlying
physical laws Scientific laws or laws of science are statements, based on reproducibility, repeated experiments or observations, that describe or prediction, predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, a ...
that govern the motion of each individual particle may (or may not) be simple, the study of the collection of particles can be extremely complex. In such a quantum system, the repeated interactions between particles create quantum correlations, or entanglement. As a consequence, the
wave function In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
of the system is a complicated object holding a large amount of
information Information is an Abstraction, abstract concept that refers to something which has the power Communication, to inform. At the most fundamental level, it pertains to the Interpretation (philosophy), interpretation (perhaps Interpretation (log ...
, which usually makes exact or analytical calculations impractical or even impossible. This becomes especially clear by a comparison to classical mechanics. Imagine a single particle that can be described with k numbers (take for example a free particle described by its position and velocity vector, resulting in k=6). In classical mechanics, n such particles can simply be described by k\cdot n numbers. The dimension of the classical many-body system scales linearly with the number of particles n . In quantum mechanics, however, the many-body-system is in general in a superposition of combinations of single particle states - all the k^n different combinations have to be accounted for. The dimension of the quantum many body system therefore scales exponentially with n , much faster than in classical mechanics. Because the required numerical expense grows so quickly, simulating the dynamics of more than three quantum-mechanical particles is already infeasible for many physical systems. Thus, many-body theoretical physics most often relies on a set of
approximation An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ...
s specific to the problem at hand, and ranks among the most computationally intensive fields of science. In many cases, emergent phenomena may arise which bear little resemblance to the underlying elementary laws. Many-body problems play a central role in
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
.


Examples

*
Condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
(
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
, nanoscience,
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
) * Bose–Einstein condensation and Superfluids *
Quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
(
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of mol ...
,
molecular physics Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry. It is often considered as a sub-field of atomic, mo ...
) *
Atomic physics Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned wit ...
*
Molecular physics Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry. It is often considered as a sub-field of atomic, mo ...
*
Nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies th ...
( Nuclear structure, nuclear reactions,
nuclear matter Nuclear matter is an idealized system of interacting nucleons (protons and neutrons) that exists in several phase (matter), phases of exotic matter that, as of yet, are not fully established. It is ''not'' matter in an atomic nucleus, but a ...
) *
Quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
(
Lattice QCD Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
,
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
spectroscopy,
QCD matter Quark matter or QCD matter ( quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences ...
,
quark–gluon plasma Quark–gluon plasma (QGP or quark soup) is an interacting localized assembly of quarks and gluons at Thermodynamic equilibrium#Local and global equilibrium, thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasm ...
)


Approaches

*
Mean-field theory In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over Degrees of ...
and extensions (e.g. Hartree–Fock, Random phase approximation) * Dynamical mean field theory * Many-body
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
and
Green's function In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if L is a linear dif ...
-based methods * Configuration interaction *
Coupled cluster Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used ...
* Various Monte-Carlo approaches *
Density functional theory Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
* Lattice gauge theory * Matrix product state * Neural network quantum states * Numerical renormalization group


Further reading

* * * * *


References

{{Authority control Quantum mechanics Computational physics