HOME

TheInfoList



OR:

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
, a log-normal (or lognormal) distribution is a continuous
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
of a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
whose
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal distribution. Equivalently, if has a normal distribution, then the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
of , , has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and
engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
sciences, as well as
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...
,
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics). The distribution is occasionally referred to as the Galton distribution or Galton's distribution, after
Francis Galton Sir Francis Galton, FRS FRAI (; 16 February 1822 – 17 January 1911), was an English Victorian era polymath: a statistician, sociologist, psychologist, anthropologist, tropical explorer, geographer, inventor, meteorologist, proto- ...
. The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. A log-normal process is the statistical realization of the multiplicative
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of many
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s, each of which is positive. This is justified by considering the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ...
in the log domain (sometimes called
Gibrat's law Gibrat's law, sometimes called Gibrat's rule of proportionate growth or the law of proportionate effect, is a rule defined by Robert Gibrat (1904–1980) in 1931 stating that the proportional rate of growth of a firm is independent of its absolut ...
). The log-normal distribution is the
maximum entropy probability distribution In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entro ...
for a random variate —for which the mean and variance of are specified.


Definitions


Generation and parameters

Let Z be a
standard normal variable A standard normal deviate is a normally distributed deviate. It is a realization of a standard normal random variable, defined as a random variable with expected value 0 and variance 1.Dodge, Y. (2003) The Oxford Dictionary of Statisti ...
, and let \mu and \sigma>0 be two real numbers. Then, the distribution of the random variable : X=e^ is called the log-normal distribution with parameters \mu and \sigma. These are the
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
(or
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithme ...
) and
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
of the variable's natural
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
, not the expectation and standard deviation of X itself. This relationship is true regardless of the base of the logarithmic or exponential function: if \log_a(X) is normally distributed, then so is \log_b(X) for any two positive numbers a,b\neq 1. Likewise, if e^Y is log-normally distributed, then so is a^Y, where 0 < a \neq 1. In order to produce a distribution with desired mean \mu_X and variance \sigma_X^2, one uses \mu = \ln\left(\frac\right) and \sigma^2 = \ln\left(1+\frac\right). Alternatively, the "multiplicative" or "geometric" parameters \mu^*=e^\mu and \sigma^*=e^\sigma can be used. They have a more direct interpretation: \mu^* is the median of the distribution, and \sigma^* is useful for determining "scatter" intervals, see below.


Probability density function

A positive random variable ''X'' is log-normally distributed (i.e., X \sim \operatorname(\mu_x,\sigma_x^2)), if the natural logarithm of ''X'' is normally distributed with mean \mu and variance \sigma^2: : \ln(X) \sim \mathcal N(\mu,\sigma^2) Let \Phi and \varphi be respectively the cumulative probability distribution function and the probability density function of the ''N''(0,1) distribution, then we have that : \begin f_X(x) & = \frac \Pr(X \le x) = \frac \Pr(\ln X \le \ln x) = \frac \Phi\left( \frac \sigma \right) \\ pt& = \varphi\left( \frac \sigma \right) \frac \left( \frac \sigma \right) = \varphi\left( \frac \sigma \right) \frac 1 \\ pt& = \frac 1 \exp\left( -\frac \right). \end


Cumulative distribution function

The
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Ev ...
is : F_X(x) = \Phi\left( \frac \sigma \right) where \Phi is the cumulative distribution function of the standard normal distribution (i.e., ''N''(0,1)). This may also be expressed as follows: : \frac12 \left 1 + \operatorname \left(\frac\right) \right= \frac12 \operatorname \left(-\frac\right) where erfc is the
complementary error function In mathematics, the error function (also called the Gauss error function), often denoted by , is a complex function of a complex variable defined as: :\operatorname z = \frac\int_0^z e^\,\mathrm dt. This integral is a special (non-elementary ...
.


Multivariate log-normal

If \boldsymbol X \sim \mathcal(\boldsymbol\mu,\,\boldsymbol\Sigma) is a
multivariate normal distribution In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One d ...
, then Y_i=\exp(X_i) has a multivariate log-normal distribution. The exponential is applied elementwise to the random vector \boldsymbol X. The mean of \boldsymbol Y is :\operatorname boldsymbol Yi=e^ , and its
covariance matrix In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of ...
is :\operatorname boldsymbol Y=e^( e^ - 1) . Since the multivariate log-normal distribution is not widely used, the rest of this entry only deals with the
univariate distribution In statistics, a univariate distribution is a probability distribution of only one random variable. This is in contrast to a multivariate distribution, the probability distribution of a random vector (consisting of multiple random variables). Examp ...
.


Characteristic function and moment generating function

All moments of the log-normal distribution exist and :\operatorname ^n e^ This can be derived by letting z=\tfrac within the integral. However, the log-normal distribution is not determined by its moments. This implies that it cannot have a defined moment generating function in a neighborhood of zero. Indeed, the expected value \operatorname ^/math> is not defined for any positive value of the argument t, since the defining integral diverges. The
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts: * The indicator function of a subset, that is the function ::\mathbf_A\colon X \to \, :which for a given subset ''A'' of ''X'', has value 1 at points ...
\operatorname ^/math> is defined for real values of , but is not defined for any complex value of that has a negative imaginary part, and hence the characteristic function is not analytic at the origin. Consequently, the characteristic function of the log-normal distribution cannot be represented as an infinite convergent series. In particular, its Taylor
formal series In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sum ...
diverges: : \sum_^\infty \frace^ However, a number of alternative
divergent series In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must ...
representations have been obtained. A closed-form formula for the characteristic function \varphi(t) with t in the domain of convergence is not known. A relatively simple approximating formula is available in closed form, and is given byS. Asmussen, J.L. Jensen, L. Rojas-Nandayapa (2016). "On the Laplace transform of the Lognormal distribution"
Methodology and Computing in Applied Probability 18 (2), 441-458.Thiele report 6 (13).
/ref> :\varphi(t)\approx\frac where W is the
Lambert W function In mathematics, the Lambert function, also called the omega function or product logarithm, is a multivalued function, namely the Branch point, branches of the converse relation of the function , where is any complex number and is the expone ...
. This approximation is derived via an asymptotic method, but it stays sharp all over the domain of convergence of \varphi.


Properties


Probability in different domains

The probability content of a log-normal distribution in any arbitrary domain can be computed to desired precision by first transforming the variable to normal, then numerically integrating using the ray-trace method.
Matlab code


Probabilities of functions of a log-normal variable

Since the probability of a log-normal can be computed in any domain, this means that the cdf (and consequently pdf and inverse cdf) of any function of a log-normal variable can also be computed.
Matlab code


Geometric or multiplicative moments

The geometric or multiplicative mean of the log-normal distribution is \operatorname = e^\mu = \mu^*. It equals the median. The geometric or multiplicative standard deviation is \operatorname = e^ = \sigma^*. By analogy with the arithmetic statistics, one can define a geometric variance, \operatorname = e^, and a geometric coefficient of variation, \operatorname = e^ - 1, has been proposed. This term was intended to be ''analogous'' to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate of \operatorname itself (see also
Coefficient of variation In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as ...
). Note that the geometric mean is smaller than the arithmetic mean. This is due to the
AM–GM inequality In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and ...
and is a consequence of the logarithm being a
concave function In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex. Definition A real-valued function f on an in ...
. In fact, : \operatorname = e^ = e^ \cdot \sqrt = \operatorname \cdot \sqrt. In finance, the term e^ is sometimes interpreted as a
convexity correction In mathematical finance, convexity refers to non-linearities in a financial model. In other words, if the price of an underlying variable changes, the price of an output does not change linearly, but depends on the second derivative (or, loosely s ...
. From the point of view of
stochastic calculus Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created an ...
, this is the same correction term as in Itō's lemma for geometric Brownian motion.


Arithmetic moments

For any real or complex number , the -th
moment Moment or Moments may refer to: * Present time Music * The Moments, American R&B vocal group Albums * ''Moment'' (Dark Tranquillity album), 2020 * ''Moment'' (Speed album), 1998 * ''Moments'' (Darude album) * ''Moments'' (Christine Guldbrand ...
of a log-normally distributed variable is given by : \operatorname ^n= e^. Specifically, the arithmetic mean, expected square, arithmetic variance, and arithmetic standard deviation of a log-normally distributed variable are respectively given by: :\begin \operatorname & = e^, \\ pt \operatorname ^2& = e^, \\ pt \operatorname & = \operatorname ^2- \operatorname 2 = (\operatorname ^2(e^ - 1) = e^ (e^ - 1), \\ pt \operatorname & = \sqrt = \operatorname \sqrt = e^\sqrt, \end The arithmetic
coefficient of variation In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as ...
\operatorname /math> is the ratio \tfrac. For a log-normal distribution it is equal to : \operatorname = \sqrt. This estimate is sometimes referred to as the "geometric CV" (GCV), due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters and can be obtained, if the arithmetic mean and the arithmetic variance are known: : \begin \mu &= \ln \left(\frac\right) = \ln \left( \frac \right), \\ pt \sigma^2 &= \ln \left(\frac\right) = \ln \left(1 + \frac\right). \end A probability distribution is not uniquely determined by the moments for . That is, there exist other distributions with the same set of moments. In fact, there is a whole family of distributions with the same moments as the log-normal distribution.


Mode, median, quantiles

The
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
is the point of global maximum of the probability density function. In particular, by solving the equation (\ln f)'=0, we get that: : \operatorname = e^. Since the log-transformed variable Y = \ln X has a normal distribution, and quantiles are preserved under monotonic transformations, the quantiles of X are : q_X(\alpha) = e^ =\mu^* (\sigma^*)^, where q_\Phi(\alpha) is the quantile of the standard normal distribution. Specifically, the median of a log-normal distribution is equal to its multiplicative mean, :\operatorname = e^\mu = \mu^*.


Partial expectation

The partial expectation of a random variable X with respect to a threshold k is defined as : g(k) = \int_k^\infty x f_X(x \vert X > k)\, dx . Alternatively, by using the definition of
conditional expectation In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – give ...
, it can be written as g(k)=\operatorname \mid X>kP(X>k). For a log-normal random variable, the partial expectation is given by: :g(k) = \int_k^\infty x f_X(x \vert X > k)\, dx = e^\, \Phi\!\left(\frac \sigma \right) where \Phi is the normal cumulative distribution function. The derivation of the formula is provided in the
Talk page MediaWiki is a Free and open-source software, free and open-source wiki software. It is used on Wikipedia and almost all other Wikimedia movement, Wikimedia Website, websites, including Wiktionary, Wikimedia Commons and Wikidata; these sit ...
. The partial expectation formula has applications in
insurance Insurance is a means of protection from financial loss in which, in exchange for a fee, a party agrees to compensate another party in the event of a certain loss, damage, or injury. It is a form of risk management, primarily used to hedge ...
and
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
, it is used in solving the partial differential equation leading to the Black–Scholes formula.


Conditional expectation

The conditional expectation of a log-normal random variable X—with respect to a threshold k—is its partial expectation divided by the cumulative probability of being in that range: :\begin E \mid X& =e^\cdot \frac \\ ptE \mid X\geqslant k&=e^\cdot \frac \\ ptE \mid X\in [k_1,k_2 &=e^\cdot \frac \end


Alternative parameterizations

In addition to the characterization by \mu, \sigma or \mu^*, \sigma^*, here are multiple ways how the log-normal distribution can be parameterized. ProbOnto, the knowledge base and ontology of
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
s lists seven such forms: * LogNormal1(μ,σ) with
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithme ...
, μ, and
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
, σ, both on the log-scale Forbes et al. Probability Distributions (2011), John Wiley & Sons, Inc. *:P(x;\boldsymbol\mu,\boldsymbol\sigma)=\frac \exp\left \frac\right/math> * LogNormal2(μ,υ) with mean, μ, and variance, υ, both on the log-scale *:P(x;\boldsymbol\mu,\boldsymbol )=\frac \exp\left \frac\right/math> * LogNormal3(m,σ) with
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
, m, on the natural scale and standard deviation, σ, on the log-scale *:P(x;\boldsymbol m,\boldsymbol \sigma) =\frac \exp\left \frac\right/math> * LogNormal4(m,cv) with median, m, and
coefficient of variation In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as ...
, cv, both on the natural scale *:P(x;\boldsymbol m,\boldsymbol )= \frac \exp\left \frac\right/math> * LogNormal5(μ,τ) with mean, μ, and precision, τ, both on the log-scale *:P(x;\boldsymbol\mu,\boldsymbol \tau)=\sqrt \frac \exp\left \frac(\ln x-\mu)^2\right/math> * LogNormal6(m,σg) with median, m, and
geometric standard deviation In probability theory and statistics, the geometric standard deviation (GSD) describes how spread out are a set of numbers whose preferred average is the geometric mean. For such data, it may be preferred to the more usual standard deviation. Note ...
, σg, both on the natural scale *:P(x;\boldsymbol m,\boldsymbol )=\frac \exp\left \frac\right/math> * LogNormal7(μNN) with mean, μN, and standard deviation, σN, both on the natural scale *:P(x;\boldsymbol ,\boldsymbol )= \frac \exp\left(-\frac\right)


Examples for re-parameterization

Consider the situation when one would like to run a model using two different optimal design tools, for example PFIM and PopED. The former supports the LN2, the latter LN7 parameterization, respectively. Therefore, the re-parameterization is required, otherwise the two tools would produce different results. For the transition \operatorname(\mu, v) \to \operatorname(\mu_N, \sigma_N) following formulas hold \mu_N = \exp(\mu+v/2) and \sigma_N = \exp(\mu+v/2)\sqrt. For the transition \operatorname(\mu_N, \sigma_N) \to \operatorname(\mu, v) following formulas hold \mu = \ln\left( \mu_N / \sqrt \right) and v = \ln(1+\sigma_N^2/\mu_N^2). All remaining re-parameterisation formulas can be found in the specification document on the project website.ProbOnto website, URL: http://probonto.org


Multiple, reciprocal, power

* Multiplication by a constant: If X \sim \operatorname(\mu, \sigma^2) then a X \sim \operatorname( \mu + \ln a,\ \sigma^2) for a > 0. * Reciprocal: If X \sim \operatorname(\mu, \sigma^2) then \tfrac \sim \operatorname(-\mu,\ \sigma^2). * Power: If X \sim \operatorname(\mu, \sigma^2) then X^a \sim \operatorname(a\mu,\ a^2 \sigma^2) for a \neq 0.


Multiplication and division of independent, log-normal random variables

If two
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
, log-normal variables X_1 and X_2 are multiplied ivided the product atiois again log-normal, with parameters \mu=\mu_1+\mu_2 math>\mu=\mu_1-\mu_2and \sigma, where \sigma^2=\sigma_1^2+\sigma_2^2. This is easily generalized to the product of n such variables. More generally, if X_j \sim \operatorname (\mu_j, \sigma_j^2) are n independent, log-normally distributed variables, then Y = \textstyle\prod_^n X_j \sim \operatorname \Big(\textstyle \sum_^n\mu_j,\ \sum_^n \sigma_j^2 \Big).


Multiplicative central limit theorem

The geometric or multiplicative mean of n independent, identically distributed, positive random variables X_i shows, for n \to\infty approximately a log-normal distribution with parameters \mu = E ln(X_i)/math> and \sigma^2 = \mbox ln(X_i)n, assuming \sigma^2 is finite. In fact, the random variables do not have to be identically distributed. It is enough for the distributions of \ln(X_i) to all have finite variance and satisfy the other conditions of any of the many variants of the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ...
. This is commonly known as
Gibrat's law Gibrat's law, sometimes called Gibrat's rule of proportionate growth or the law of proportionate effect, is a rule defined by Robert Gibrat (1904–1980) in 1931 stating that the proportional rate of growth of a firm is independent of its absolut ...
.


Other

A set of data that arises from the log-normal distribution has a symmetric
Lorenz curve In economics, the Lorenz curve is a graphical representation of the distribution of income or of wealth. It was developed by Max O. Lorenz in 1905 for representing Economic inequality, inequality of the wealth distribution. The curve is a graph o ...
(see also
Lorenz asymmetry coefficient The Lorenz asymmetry coefficient (LAC) is a summary statistic of the Lorenz curve that measures the degree of asymmetry of the curve. The Lorenz curve is used to describe the inequality in the distribution of a quantity (usually income or wealth in ...
). The harmonic H, geometric G and arithmetic A means of this distribution are related; such relation is given by : H = \frac A. Log-normal distributions are
infinitely divisible Infinite divisibility arises in different ways in philosophy, physics, economics, order theory (a branch of mathematics), and probability theory (also a branch of mathematics). One may speak of infinite divisibility, or the lack thereof, of matter, ...
, but they are not
stable distribution In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stab ...
s, which can be easily drawn from.


Related distributions

* If X \sim \mathcal(\mu, \sigma^2) is a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
, then \exp(X) \sim \operatorname(\mu, \sigma^2). * If X \sim \operatorname(\mu, \sigma^2) is distributed log-normally, then \ln(X) \sim \mathcal(\mu, \sigma^2) is a normal random variable. * Let X_j \sim \operatorname(\mu_j, \sigma_j^2) be independent log-normally distributed variables with possibly varying \sigma and \mu parameters, and Y = \sum_^n X_j. The distribution of Y has no closed-form expression, but can be reasonably approximated by another log-normal distribution Z at the right tail. Its probability density function at the neighborhood of 0 has been characterized and it does not resemble any log-normal distribution. A commonly used approximation due to L.F. Fenton (but previously stated by R.I. Wilkinson and mathematical justified by Marlow) is obtained by matching the mean and variance of another log-normal distribution: \begin \sigma^2_Z &= \ln\!\left \frac + 1\right \\ \mu_Z &= \ln\!\left \sum e^ \right- \frac. \end In the case that all X_j have the same variance parameter \sigma_j=\sigma, these formulas simplify to \begin \sigma^2_Z &= \ln\!\left (e^-1)\frac + 1\right \\ \mu_Z &= \ln\!\left \sum e^ \right+ \frac - \frac. \end For a more accurate approximation, one can use the
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be determi ...
to estimate the cumulative distribution function, the pdf and the right tail. The sum of correlated log-normally distributed random variables can also be approximated by a log-normal distribution \begin S_+ &= \operatorname\left sum_i X_i \right= \sum_i \operatorname _i= \sum_i e^ \\ \sigma^2_ &= 1/S_+^2 \, \sum_ \operatorname_ \sigma_i \sigma_j \operatorname _i\operatorname _j= 1/S_+^2 \, \sum_ \operatorname_ \sigma_i \sigma_j e^ e^ \\ \mu_Z &= \ln\left( S_+ \right) - \sigma_^2/2 \end * If X \sim \operatorname(\mu, \sigma^2) then X+c is said to have a ''Three-parameter log-normal'' distribution with support x\in (c, +\infty). \operatorname +c= \operatorname + c, \operatorname +c= \operatorname /math>. * The log-normal distribution is a special case of the semi-bounded
Johnson's SU-distribution The Johnson's ''SU''-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. Johnson proposed it as a transformation of the normal distribution: : z=\gamma+\delta \sinh^ \left(\frac\righ ...
. * If X\mid Y \sim \operatorname(Y) with Y \sim \operatorname(\mu, \sigma^2), then X \sim \operatorname(\mu, \sigma) (
Suzuki distribution is a Japan, Japanese multinational corporation headquartered in Minami-ku, Hamamatsu, Japan. Suzuki manufactures automobiles, motorcycles, All-terrain vehicle, all-terrain vehicles (ATVs), outboard motor, outboard marine engines, wheelchairs ...
). * A substitute for the log-normal whose integral can be expressed in terms of more elementary functions can be obtained based on the
logistic distribution Logistic may refer to: Mathematics * Logistic function, a sigmoid function used in many fields ** Logistic map, a recurrence relation that sometimes exhibits chaos ** Logistic regression, a statistical model using the logistic function ** Logit, ...
to get an approximation for the CDF F(x;\mu,\sigma) = \left left(\frac\right)^ + 1\right. This is a
log-logistic distribution In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events ...
.


Statistical inference


Estimation of parameters

For determining the
maximum likelihood In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, ...
estimators of the log-normal distribution parameters ''μ'' and ''σ'', we can use the same procedure as for the
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
. Note that L(\mu, \sigma) = \prod_^n \frac 1 \varphi_ (\ln x_i), where \varphi is the density function of the normal distribution \mathcal N(\mu,\sigma^2). Therefore, the log-likelihood function is \ell (\mu,\sigma \mid x_1, x_2, \ldots, x_n) = - \sum _i \ln x_i + \ell_N (\mu, \sigma \mid \ln x_1, \ln x_2, \dots, \ln x_n). Since the first term is constant with regard to ''μ'' and ''σ'', both logarithmic likelihood functions, \ell and \ell_N, reach their maximum with the same \mu and \sigma. Hence, the maximum likelihood estimators are identical to those for a normal distribution for the observations \ln x_1, \ln x_2, \dots, \ln x_n), \widehat \mu = \frac , \qquad \widehat \sigma^2 = \frac . For finite ''n'', these estimators are biased. Whereas the bias for \widehat\mu is negligible, a less biased estimator for \sigma is obtained as for the normal distribution by replacing the denominator ''n'' by ''n''−1 in the equation for \widehat\sigma^2. When the individual values x_1, x_2, \ldots, x_n are not available, but the sample's mean \bar x and
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
''s'' is, then the corresponding parameters are determined by the following formulas, obtained from solving the equations for the expectation \operatorname /math> and variance \operatorname /math> for \mu and \sigma: \mu = \ln\left(\bar x\ \Big/ \ \sqrt\right), \qquad \sigma^2 = \ln\left(1 + \frac\right).


Statistics

The most efficient way to analyze log-normally distributed data consists of applying the well-known methods based on the normal distribution to logarithmically transformed data and then to back-transform results if appropriate.


Scatter intervals

A basic example is given by scatter intervals: For the normal distribution, the interval mu-\sigma,\mu+\sigma/math> contains approximately two thirds (68%) of the probability (or of a large sample), and mu-2\sigma,\mu+2\sigma/math> contain 95%. Therefore, for a log-normal distribution, mu^*/\sigma^*,\mu^*\cdot\sigma^* mu^* ^\times\!\!/ \sigma^*/math> contains 2/3, and mu^*/(\sigma^*)^2,\mu^*\cdot(\sigma^*)^2= mu^* ^\times\!\!/ (\sigma^*)^2/math> contains 95% of the probability. Using estimated parameters, then approximately the same percentages of the data should be contained in these intervals.


Confidence interval for ''μ*''

Using the principle, note that a confidence interval for \mu is widehat\mu \pm q \cdot \widehat\mathop/math>, where \mathop = \widehat\sigma / \sqrt is the standard error and ''q'' is the 97.5% quantile of a
t distribution The phrase "T distribution" may refer to * Student's t-distribution in univariate probability theory, * Hotelling's T-square distribution in multivariate statistics. * Multivariate Student distribution. {{disambig ...
with ''n-1'' degrees of freedom. Back-transformation leads to a confidence interval for \mu^*, widehat\mu^* ^\times\!\!/ (\operatorname^*)^q/math> with \operatorname^*=(\widehat\sigma^*)^


Extremal principle of entropy to fix the free parameter ''σ''

In applications, \sigma is a parameter to be determined. For growing processes balanced by production and dissipation, the use of an extremal principle of Shannon entropy shows that \sigma = \frac 1 \sqrt This value can then be used to give some scaling relation between the inflexion point and maximum point of the log-normal distribution. This relationship is determined by the base of natural logarithm, e = 2.718\ldots, and exhibits some geometrical similarity to the minimal surface energy principle. These scaling relations are useful for predicting a number of growth processes (epidemic spreading, droplet splashing, population growth, swirling rate of the bathtub vortex, distribution of language characters, velocity profile of turbulences, etc.). For example, the log-normal function with such \sigma fits well with the size of secondarily produced droplets during droplet impact and the spreading of an epidemic disease. The value \sigma = 1 \big/ \sqrt is used to provide a probabilistic solution for the Drake equation.


Occurrence and applications

The log-normal distribution is important in the description of natural phenomena. Many natural growth processes are driven by the accumulation of many small percentage changes which become additive on a log scale. Under appropriate regularity conditions, the distribution of the resulting accumulated changes will be increasingly well approximated by a log-normal, as noted in the section above on " Multiplicative Central Limit Theorem". This is also known as
Gibrat's law Gibrat's law, sometimes called Gibrat's rule of proportionate growth or the law of proportionate effect, is a rule defined by Robert Gibrat (1904–1980) in 1931 stating that the proportional rate of growth of a firm is independent of its absolut ...
, after Robert Gibrat (1904–1980) who formulated it for companies. If the rate of accumulation of these small changes does not vary over time, growth becomes independent of size. Even if that's not true, the size distributions at any age of things that grow over time tends to be log-normal. A second justification is based on the observation that fundamental natural laws imply multiplications and divisions of positive variables. Examples are the simple gravitation law connecting masses and distance with the resulting force, or the formula for equilibrium concentrations of chemicals in a solution that connects concentrations of educts and products. Assuming log-normal distributions of the variables involved leads to consistent models in these cases. Even if none of these justifications apply, the log-normal distribution is often a plausible and empirically adequate model. Examples include the following:


Human behaviors

* The length of comments posted in Internet discussion forums follows a log-normal distribution. * Users' dwell time on online articles (jokes, news etc.) follows a log-normal distribution. * The length of
chess Chess is a board game for two players, called White and Black, each controlling an army of chess pieces in their color, with the objective to checkmate the opponent's king. It is sometimes called international chess or Western chess to disti ...
games tends to follow a log-normal distribution. * Onset durations of acoustic comparison stimuli that are matched to a standard stimulus follow a log-normal distribution. *
Rubik's Cube The Rubik's Cube is a Three-dimensional space, 3-D combination puzzle originally invented in 1974 by Hungarians, Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the Magic Cube, the puzzle was licensed by Rubik t ...
solves, both general or by person, appear to follow a log-normal distribution.


In

biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
and
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...

* Measures of size of living tissue (length, skin area, weight). * For highly communicable epidemics, such as SARS in 2003, if public intervention control policies are involved, the number of hospitalized cases is shown to satisfy the log-normal distribution with no free parameters if an entropy is assumed and the standard deviation is determined by the principle of maximum rate of
entropy production Entropy production (or generation) is the amount of entropy which is produced in any irreversible processes such as heat and mass transfer processes including motion of bodies, heat exchange, fluid flow, substances expanding or mixing, anelastic d ...
. * The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth. * The normalised RNA-Seq readcount for any genomic region can be well approximated by log-normal distribution. * The
PacBio Pacific Biosciences of California, Inc. (aka PacBio) is an American biotechnology company founded in 2004 that develops and manufactures systems for DNA sequencing, gene sequencing and some novel real time biological observation. PacBio describ ...
sequencing read length follows a log-normal distribution. * Certain physiological measurements, such as blood pressure of adult humans (after separation on male/female subpopulations). *Several
pharmacokinetic Pharmacokinetics (from Ancient Greek ''pharmakon'' "drug" and ''kinetikos'' "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to determining the fate of substances administered ...
variables, such as Cmax,
elimination half-life Biological half-life (also known as elimination half-life, pharmacologic half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration ( Cmax) to half of Cmax in the bl ...
and the
elimination rate constant The elimination rate constant ''K'' or ''Ke'' is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. It is often abbreviated ''K'' or ''K'e''. It is equivalent to the fraction of a substance ...
. * In neuroscience, the distribution of firing rates across a population of neurons is often approximately log-normal. This has been first observed in the cortex and striatum and later in hippocampus and entorhinal cortex, and elsewhere in the brain. Also, intrinsic gain distributions and synaptic weight distributions appear to be log-normal as well. *In operating-rooms management, the distribution of surgery duration. *In the size of avalanches of fractures in the cytoskeleton of living cells, showing log-normal distributions, with significantly higher size in cancer cells than healthy ones.


In

colloidal chemistry Interface and colloid science is an interdisciplinary intersection of branches of chemistry, physics, nanoscience and other fields dealing with colloids, heterogeneous systems consisting of a mechanical mixture of particles between 1 nm and ...
and
polymer chemistry Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are ...

*
Particle size distribution The particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Sig ...
s. *
Molar mass distribution The molar mass distribution (or molecular weight distribution) describes the relationship between the number of moles of each polymer species (Ni) and the molar mass (Mi) of that species. In linear polymers, the individual polymer chains rarely have ...
s. Consequently,
reference ranges In medicine and health-related fields, a reference range or reference interval is the range or the interval of values that is deemed normal for a physiological measurement in healthy persons (for example, the amount of creatinine in the blood, o ...
for measurements in healthy individuals are more accurately estimated by assuming a log-normal distribution than by assuming a symmetric distribution about the mean.


Hydrology

*In
hydrology Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is calle ...
, the log-normal distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes. ::The image on the right, made with
CumFreq In statistics and data analysis the application software CumFreq is a tool for cumulative frequency analysis of a single variable and for probability distribution fitting. Originally the method was developed for the analysis of hydrological ...
, illustrates an example of fitting the log-normal distribution to ranked annually maximum one-day rainfalls showing also the 90%
confidence belt In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 9 ...
based on the
binomial distribution In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no quest ...
. ::The rainfall data are represented by
plotting position Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' ...
s as part of a
cumulative frequency analysis Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called ''frequency of non-exceedance ...
.


Social sciences and demographics

* In
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
, there is evidence that the
income Income is the consumption and saving opportunity gained by an entity within a specified timeframe, which is generally expressed in monetary terms. Income is difficult to define conceptually and the definition may be different across fields. For ...
of 97%–99% of the population is distributed log-normally. (The distribution of higher-income individuals follows a
Pareto distribution The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto ( ), is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actua ...
). * If an income distribution follows a log-normal distribution with standard deviation \sigma, then the Gini coefficient, commonly use to evaluate income inequality, can be computed as G = \operatorname\left(\frac\right) where \operatorname is the
error function In mathematics, the error function (also called the Gauss error function), often denoted by , is a complex function of a complex variable defined as: :\operatorname z = \frac\int_0^z e^\,\mathrm dt. This integral is a special (non-elementary ...
, since G=2 \Phi \left(\frac\right)-1, where \Phi(x) is the cumulative distribution function of a standard normal distribution. * In
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
, in particular the
Black–Scholes model The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the parabolic partial differential equation in the model, known as the Blac ...
, changes in the ''logarithm'' of exchange rates, price indices, and stock market indices are assumed normal (these variables behave like compound interest, not like simple interest, and so are multiplicative). However, some mathematicians such as
Benoit Mandelbrot Benoit B. Mandelbrot (20 November 1924 – 14 October 2010) was a Polish-born French-American mathematician and polymath with broad interests in the practical sciences, especially regarding what he labeled as "the art of roughness" of phy ...
have argued that log-Lévy distributions, which possesses heavy tails would be a more appropriate model, in particular for the analysis for
stock market crash A stock market crash is a sudden dramatic decline of stock In finance, stock (also capital stock) consists of all the shares by which ownership of a corporation or company is divided.Longman Business English Dictionary: "stock - ''especia ...
es. Indeed, stock price distributions typically exhibit a
fat tail A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are someti ...
. The fat tailed distribution of changes during stock market crashes invalidate the assumptions of the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ...
. * In
scientometrics Scientometrics is the field of study which concerns itself with measuring and analysing scholarly literature. Scientometrics is a sub-field of informetrics. Major research issues include the measurement of the impact of research papers and academi ...
, the number of citations to journal articles and patents follows a discrete log-normal distribution. * City sizes (population) satisfy Gibrat's Law. The growth process of city sizes is proportionate and invariant with respect to size. From the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ...
therefore, the log of city size is normally distributed. * The number of sexual partners appears to be best described by a log-normal distribution.


Technology

* In
reliability Reliability, reliable, or unreliable may refer to: Science, technology, and mathematics Computing * Data reliability (disambiguation), a property of some disk arrays in computer storage * High availability * Reliability (computer networking), a ...
analysis, the log-normal distribution is often used to model times to repair a maintainable system. * In
wireless communication Wireless communication (or just wireless, when the context allows) is the transfer of information between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most ...
, "the local-mean power expressed in logarithmic values, such as dB or neper, has a normal (i.e., Gaussian) distribution." Also, the random obstruction of radio signals due to large buildings and hills, called shadowing, is often modeled as a log-normal distribution. * Particle size distributions produced by comminution with random impacts, such as in
ball mill A ball mill is a type of grinder used to grind or blend materials for use in mineral dressing processes, paints, pyrotechnics, ceramics, and selective laser sintering. It works on the principle of impact and attrition: size reduction is done ...
ing. * The
file size File size is a measure of how much data a computer file contains or, alternately, how much storage it consumes. Typically, file size is expressed in units of measurement based on the byte. By convention, file size units use either a metric prefix ...
distribution of publicly available audio and video data files (
MIME types A media type (also known as a MIME type) is a two-part identifier for file formats and format contents transmitted on the Internet. The Internet Assigned Numbers Authority (IANA) is the official authority for the standardization and publication o ...
) follows a log-normal distribution over five
orders of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic dis ...
. * In computer networks and
Internet traffic Internet traffic is the flow of data within the entire Internet, or in certain network links of its constituent networks. Common traffic measurements are total volume, in units of multiples of the byte, or as transmission rates in bytes per cert ...
analysis, log-normal is shown as a good statistical model to represent the amount of traffic per unit time. This has been shown by applying a robust statistical approach on a large groups of real Internet traces. In this context, the log-normal distribution has shown a good performance in two main use cases: (1) predicting the proportion of time traffic will exceed a given level (for service level agreement or link capacity estimation) i.e. link dimensioning based on bandwidth provisioning and (2) predicting 95th percentile pricing.


See also

*
Heavy-tailed distribution In probability theory, heavy-tailed distributions are probability distributions whose tails are not exponentially bounded: that is, they have heavier tails than the exponential distribution. In many applications it is the right tail of the distrib ...
*
Log-distance path loss model The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over distance. Mathematical formulation The model Log-distance path loss model is formally ...
* Modified lognormal power-law distribution *
Slow fading In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a ...


Notes


Further reading

* * Aitchison, J. and Brown, J.A.C. (1957) ''The Lognormal Distribution'', Cambridge University Press. * * *


External links


The normal distribution is the log-normal distribution
{{DEFAULTSORT:Log-Normal Distribution Continuous distributions Normal distribution Exponential family distributions Non-Newtonian calculus