Lithogenic Silica
   HOME

TheInfoList



OR:

Lithogenic silica (LSi) is silica (SiO2) derived from terrigenous rock (Igneous, metamorphic, and sedimentary), lithogenic sediments composed of the
detritus In biology, detritus () is dead particulate organic material, as distinguished from dissolved organic material. Detritus typically includes the bodies or fragments of bodies of dead organisms, and fecal material. Detritus typically hosts commun ...
of pre-existing rock, volcanic
ejecta Ejecta (from the Latin: "things thrown out", singular ejectum) are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic materials (tephra) that came out of a volcanic explosion and magma ...
, extraterrestrial material, and minerals such
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
. Silica is the most abundant compound in the earth's crust (59%) and the main component of almost every rock (>95%).


Lithogenic Silica in Marine Systems

LSi can either be accumulated "directly" in marine sediments as
clastic Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus,Essentials of Geology, 3rd Ed, Stephen Marshak, p. G-3 chunks, and smaller grains of rock broken off other rocks ...
particles or be transferred into dissolved silica (DSi) in the water column. Within living marine systems, DSi is the most important form of silica Forms of DSi, such as silicic acid (Si(OH)4), are utilized by silicoflagellates and radiolarians to create their mineral skeletons, and by diatoms to develop their frustules (external shells). These structures are vitally important, as they can protect, amplify light for photosynthesis, and even help keep these organisms afloat in the water column. DSi more readily forms from biogenic silica (BSi) than from LSi, as the latter is less soluble in water. However, LSi is still an important supply to the
silica cycle The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant o ...
, due to it being a primary supplier of silica to the water column.


Sources

Rivers A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of wate ...
are one of the major suppliers of LSi to marine environments. As they flow, rivers pick up fine particles, such as clays,
silts Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel when ...
, and sand, through physical weathering. Lithogenic silicic acid forms through chemical weathering, as CO2-rich water comes into contact with
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
and aluminosilicate minerals from terrestrial rocks. The silicic acid is then transported to the river via runoff or groundwater flow before being transported to the ocean. Estimates of combined flux (both lithogenic and biogenic) report that about 6.2 ± 1.8 Tmol Si year−1 and 147 ¨ ± 44 Tmol Si year−1 of dissolved and particulate silica, respectively, enter estuaries. Eolian transport occurs when wind picks up weathered particles, primarily lithogenic, and transports them into the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, from which they subsequently fall into the ocean. The solubility of the silica within such sediments depends on both the origin and composition of the material. For example, studies of
Sahara , photo = Sahara real color.jpg , photo_caption = The Sahara taken by Apollo 17 astronauts, 1972 , map = , map_image = , location = , country = , country1 = , ...
n sediment, which is mostly made of quartz, found a solubility range of 0.02%-1.1%, while some feldspar-rich sediment was estimated to have a solubility of about 10%. Eolian LSi can also accumulate in the atmosphere and fall as rain dust, a phenomenon in which raindrops contain macroscopic amounts of sediment. Dry deposition of LSi ranges from 2.8 to 4.6 Tmol Si year−1, with about 0.5 ± 0.5 Tmol Si year−1 being transferred to DSi. Seafloor inputs, including
hydrothermal vents A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspot ...
and low-temperature dissolution of basalt and other terrigenous marine sediments, represent considerable sources of lithogenic DSi. High-temperature fluids leach silicon from the oceanic crust as they rise toward the seafloor, accumulating great amounts of DSi. Hydrothermal inputs are divided into 2 categories: ridge axis, which originate directly from the mid-ocean ridges (350◦C ± 30◦C), and ridge flank, which are diffuse inputs away from the ridge (<75◦C). The latter loses much of its DSi to precipitation (as clays) as it cools. As a result, ridge flank dissolved LSi only enters the ocean at 0.07 ± 0.07 Tmol Si year−1, compared to 0.5 ± 0.3 Tmol Si year−1 from ridge axis systems. In low temperature (<2◦C) conditions, seafloor basalt and lithogenic sediments can leach LSi directly into the seawater. Previous estimates that addressed seafloor basalt alone calculate a DSi flux of 0.4 ± 0.3 Tmol Si year−1. More recent experiments adding lithogenic sediments (including clay, shale, basalt, and sand) to the calculation gave values of 1.9 ± 0.7 Tmol Si year−1. A 2019 study proposed that, in the surf zone of beaches, wave action disturbed abiotic sand grains and dissolved them over time. To test this, the researchers placed sand samples in closed containers with different kinds of water and rotated the containers to simulate wave action. They discovered that the higher the rock/water ratio within the container, and the faster the container spun, the more silica dissolved into solution. After analyzing and upscaling their results, they estimated that anywhere from 3.2 ± 1.0 – 5.0 ± 2.0 Tmol Si yr−1 of lithogenic DSi could enter the ocean from sandy beaches, a massive increase from a previous estimate of 0.3 Tmol Si yr−1.Wollast, R., & Mackenzie, F.T. (1983). Global Cycle of Silica. In S.R. Aston (Ed.), Silicon Geochemistry and Biogeochemistry (pp. 39-76). Academic Press. If confirmed, this represents a significant input of dissolved LSi that was previously ignored.


See also

* Biogenic silica *
Silica cycle The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant o ...


Notes


References

{{DEFAULTSORT:Lithogenic Silica Physical oceanography Sedimentary rocks