HOME

TheInfoList



OR:

Computer cooling is required to remove the
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ...
produced by
computer components Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), random access memory (RAM), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboa ...
, to keep components within permissible
operating temperature An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the de ...
limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s such as
central processing unit A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, an ...
s (CPUs),
chipset In a computer system, a chipset is a set of electronic components An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are ...
s,
graphics cards A graphics card (also called a video card, display card, graphics adapter, VGA card/VGA, video adapter, display adapter, or mistakenly GPU) is an expansion card which generates a feed of output images to a display device, such as a computer moni ...
, and
hard disk drive A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnet ...
s. Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling. Use of
heatsinks All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy inte ...
cooled by airflow reduces the temperature rise produced by a given amount of heat. Attention to patterns of airflow can prevent the development of hotspots.
Computer fan A computer fan is any fan inside, or attached to, a computer case used for active cooling. Fans are used to draw cooler air into the case from the outside, expel warm air from inside and move air across a heat sink to cool a particular componen ...
s are widely used along with heatsink fans to reduce temperature by actively exhausting hot air. There are also more exotic cooling techniques, such as
liquid cooling Liquid cooling refers to cooling by means of the convection or circulation of a liquid. Examples of liquid cooling technologies include: * Cooling by convection or circulation of coolant, including water cooling * Liquid cooling and ventilatio ...
. All modern day processors are designed to cut out or reduce their voltage or clock speed if the internal temperature of the processor exceeds a specified limit. This is generally known as Thermal Throttling, in the case of reduction of clock speeds or Thermal Shutdown in the case of a complete shutdown of the device or system. Cooling may be designed to reduce the ambient temperature within the case of a computer, such as by exhausting hot air, or to cool a single component or small area (spot cooling). Components commonly individually cooled include the CPU,
graphics processing unit A graphics processing unit (GPU) is a specialized electronic circuit designed to manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded systems, mobi ...
(GPU) and the northbridge.


Generators of unwanted heat

Integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s (e.g. CPU and GPU) are the main generators of heat in modern computers. Heat generation can be reduced by efficient design and selection of operating parameters such as voltage and frequency, but ultimately, acceptable performance can often only be achieved by managing significant heat generation. In operation, the temperature of a computer's components will rise until the heat transferred to the surroundings is equal to the heat produced by the component, that is, when
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
is reached. For reliable operation, the temperature must never exceed a specified maximum permissible value unique to each component. For semiconductors, instantaneous
junction temperature Junction temperature, short for transistor junction temperature, is the highest operating temperature of the actual semiconductor in an electronic device. In operation, it is higher than case temperature and the temperature of the part's exterior. T ...
, rather than component case, heatsink, or ambient temperature is critical. Cooling can be impaired by: * Dust acting as a thermal insulator and impeding airflow, thereby reducing heatsink and fan performance. * Poor airflow including
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
due to friction against impeding components such as
ribbon cables A ribbon cable (also known as multi-wire planar cable) is a cable with many conducting wires running parallel to each other on the same flat plane. As a result, the cable is wide and flat. Its name comes from its resemblance to a piece of rib ...
, or incorrect orientation of fans, can reduce the amount of air flowing through a case and even create localized whirlpools of hot air in the case. In some cases of equipment with bad thermal design, cooling air can easily flow out through "cooling" holes before passing over hot components; cooling in such cases can often be improved by blocking of selected holes. * Poor heat transfer due to poor thermal contact between components to be cooled and cooling devices. This can be improved by the use of thermal compounds to even out surface imperfections, or even by
lapping Lapping is a machining process in which two surfaces are rubbed together with an abrasive between them, by hand movement or using a machine. Lapping often follows other subtractive processes with more aggressive material removal as a first step ...
.


Damage prevention

Because high temperatures can significantly reduce life span or cause permanent damage to components, and the heat output of components can sometimes exceed the computer's cooling capacity, manufacturers often take additional precautions to ensure that temperatures remain within safe limits. A computer with
thermal sensors A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
integrated in the CPU, motherboard, chipset, or GPU can shut itself down when high temperatures are detected to prevent permanent damage, although this may not completely guarantee long-term safe operation. Before an overheating component reaches this point, it may be "throttled" until temperatures fall below a safe point using
dynamic frequency scaling Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve ...
technology. Throttling reduces the operating frequency and voltage of an integrated circuit or disables non-essential features of the chip to reduce heat output, often at the cost of slightly or significantly reduced performance. For desktop and notebook computers, throttling is often controlled at the
BIOS In computing, BIOS (, ; Basic Input/Output System, also known as the System BIOS, ROM BIOS, BIOS ROM or PC BIOS) is firmware used to provide runtime services for operating systems and programs and to perform hardware initialization during the ...
level. Throttling is also commonly used to manage temperatures in smartphones and tablets, where components are packed tightly together with little to no active cooling, and with additional heat transferred from the hand of the user. The user can also do a lot in order to preemptively prevent damage from happening. They can perform a visual inspection of the cooler and case fans. If any of them aren't spinning correctly, it's likely that they'll need to be replaced. The user should also clean the fans thoroughly, since dust and debris can increase the ambient case temperature and impact fan performance. The best way to do so is with compressed air in an open space. Another preemptive technique to prevent damage is to replace the thermal paste regularly.


Mainframes and supercomputers

As electronic computers became larger and more complex, cooling of the active components became a critical factor for reliable operation. Early vacuum-tube computers, with relatively large cabinets, could rely on natural or forced air circulation for cooling. However, solid-state devices were packed much more densely and had lower allowable operating temperatures. Starting in 1965, IBM and other manufacturers of mainframe computers sponsored intensive research into the physics of cooling densely packed integrated circuits. Many air and liquid cooling systems were devised and investigated, using methods such as natural and forced convection, direct air impingement, direct liquid immersion and forced convection, pool boiling, falling films, flow boiling, and liquid jet impingement. Mathematical analysis was used to predict temperature rises of components for each possible cooling system geometry. IBM developed three generations of the Thermal Conduction Module (TCM) which used a water-cooled cold plate in direct thermal contact with integrated circuit packages. Each package had a thermally conductive pin pressed onto it, and helium gas surrounded chips and heat-conducting pins. The design could remove up to 27 watts from a chip and up to 2000 watts per module, while maintaining chip package temperatures of around . Systems using TCMs were the 3081 family (1980), ES/3090 (1984) and some models of the
ES/9000 The IBM System/390 is a discontinued mainframe product family implementing the ESA/390, the fifth generation of the System/360 instruction set architecture. The first computers to use the ESA/390 were the Enterprise System/9000 (ES/9000) ...
(1990). In the IBM 3081 processor, TCMs allowed up to 2700 watts on a single printed circuit board while maintaining chip temperature at . Thermal conduction modules using water cooling were also used in mainframe systems manufactured by other companies including Mitsubishi and Fujitsu. The
Cray-1 The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, over 100 Cray-1s were sold, making it one of the ...
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructions ...
designed in 1976 had a distinctive cooling system. The machine was only in height and in diameter, and consumed up to 115 kilowatts; this is comparable to the average power consumption of a few dozen Western homes or a medium-sized car. The integrated circuits used in the machine were the fastest available at the time, using
emitter-coupled logic In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to ...
; however, the speed was accompanied by high power consumption compared to later
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
devices. Heat removal was critical.
Refrigerant A refrigerant is a working fluid used in the heat pump and refrigeration cycle, refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Ref ...
was circulated through piping embedded in vertical cooling bars in twelve columnar sections of the machine. Each of the 1662 printed circuit modules of the machine had a copper core and was clamped to the cooling bar. The system was designed to maintain the cases of integrated circuits at no more than , with refrigerant circulating at . Final heat rejection was through a water-cooled condenser. Piping, heat exchangers, and pumps for the cooling system were arranged in an upholstered bench seat around the outside of the base of the computer. About 20 percent of the machine's weight in operation was refrigerant. In the later Cray-2, with its more densely packed modules, Seymour Cray had trouble effectively cooling the machine using the metal conduction technique with mechanical refrigeration, so he switched to 'liquid immersion' cooling. This method involved filling the chassis of the Cray-2 with a liquid called
Fluorinert Fluorinert is the trademarked brand name for the line of electronics coolant liquids sold commercially by 3M. As perfluorinated compounds (PFCs), all Fluorinert variants have an extremely high Global Warming Potential (GWP), so should be used wit ...
. Fluorinert, as its name implies, is an inert liquid that does not interfere with the operation of electronic components. As the components came to operating temperature, the heat would dissipate into the Fluorinert, which was pumped out of the machine to a chilled water heat exchanger.
Performance per watt In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware. Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consume ...
of modern systems has greatly improved; many more computations can be carried out with a given power consumption than was possible with the integrated circuits of the 1980s and 1990s. Recent supercomputer projects such as
Blue Gene Blue Gene is an IBM project aimed at designing supercomputers that can reach operating speeds in the petaFLOPS (PFLOPS) range, with low power consumption. The project created three generations of supercomputers, Blue Gene/L, Blue Gene/P, ...
rely on air cooling, which reduces cost, complexity, and size of systems compared to liquid cooling.


Air cooling


Fans

Fans are used when natural convection is insufficient to remove heat. Fans may be fitted to the computer case or attached to CPUs, GPUs, chipsets,
power supply A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a r ...
units (PSUs),
hard drive A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnet ...
s, or as cards plugged into an expansion slot. Common fan sizes include 40, 60, 80, 92, 120, and 140 mm. 200, 230, 250 and 300 mm fans are sometimes used in high-performance personal computers.


Performance of fans in chassis

A computer has a certain resistance to air flowing through the chassis and components. This is the sum of all the smaller impediments to air flow, such as the inlet and outlet openings, air filters, internal chassis, and electronic components. Fans are simple air pumps that provide pressure to the air of the inlet side relative to the output side. That pressure difference moves air through the chassis, with air flowing to areas of lower pressure. Fans generally have two published specifications: free air flow and maximum differential pressure. Free air flow is the amount of air a fan will move with zero back-pressure. Maximum differential pressure is the amount of pressure a fan can generate when completely blocked. In between these two extremes are a series of corresponding measurements of flow versus pressure which is usually presented as a graph. Each fan model will have a unique curve, like the dashed curves in the adjacent illustration.


Parallel vis-à-vis series installation

Fans can be installed parallel to each other, in series, or a combination of both. Parallel installation would be fans mounted side by side. Series installation would be a second fan in line with another fan such as an inlet fan and an exhaust fan. To simplify the discussion, it is assumed the fans are the same model. Parallel fans will provide double the free air flow but no additional driving pressure. Series installation, on the other hand, will double the available static pressure but not increase the free air flow rate. The adjacent illustration shows a single fan versus two fans in parallel with a maximum pressure of of water and a doubled flow rate of about . Note that air flow changes as the square root of the pressure. Thus, doubling the pressure will only increase the flow 1.41 ( ) times, not twice as might be assumed. Another way of looking at this is that the pressure must go up by a factor of four to double the flow rate. To determine flow rate through a chassis, the chassis impedance curve can be measured by imposing an arbitrary pressure at the inlet to the chassis and measuring the flow through the chassis. This requires fairly sophisticated equipment. With the chassis impedance curve (represented by the solid red and black lines on the adjacent curve) determined, the actual flow through the chassis as generated by a particular fan configuration is graphically shown where the chassis impedance curve crosses the fan curve. The slope of the chassis impedance curve is a square root function, where doubling the flow rate required four times the differential pressure. In this particular example, adding a second fan provided marginal improvement with the flow for both configurations being approximately . While not shown on the plot, a second fan in series would provide slightly better performance than the parallel installation.


Temperature vis-à-vis flow rate

The equation for required airflow through a chassis is CFM = \frac where CFM =
Cubic Feet per Minute Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
() Q = Heat Transferred (kW) Cp = Specific Heat of Air r = Density DT = Change in Temperature (in °F) A simple conservative rule of thumb for cooling flow requirements, discounting such effects as heat loss through the chassis walls and laminar versus turbulent flow, and accounting for the constants for specific heat and density at sea level is: CFM = \frac CFM = \frac For example, a typical chassis with 500 watts of load, maximum internal temperature in a environment, i.e. a difference of : CFM = \frac = 53 This would be actual flow through the chassis and not the free air rating of the fan. It should also be noted that "Q", the heat transferred, is a function of the heat transfer efficiency of a CPU or GPU cooler to the airflow.


Piezoelectric pump

A "dual piezo cooling jet", patented by GE, uses vibrations to pump air through the device. The initial device is three millimetres thick and consists of two
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
discs that are connected on either side to a sliver of piezoelectric ceramics. An alternating current passed through the ceramic component causes it to expand and contract at up to 150 times per second so that the nickel discs act like a bellows. Contracted, the edges of the discs are pushed together and suck in hot air. Expanding brings the nickel discs together, expelling the air at high velocity. The device has no bearings and does not require a motor. It is thinner and consumes less energy than typical fans. The jet can move the same amount of air as a cooling fan twice its size while consuming half as much electricity and at lower cost.


Passive cooling

Passive Passive may refer to: * Passive voice, a grammatical voice common in many languages, see also Pseudopassive * Passive language, a language from which an interpreter works * Passivity (behavior), the condition of submitting to the influence of on ...
heatsink cooling involves attaching a block of machined or extruded metal to the part that needs cooling. A thermal adhesive may be used. More commonly for a personal computer CPU, a clamp holds the heatsink directly over the chip, with a thermal grease or thermal pad spread between. This block has fins and ridges to increase its surface area. The heat conductivity of metal is much better than that of air, and it radiates heat better than the component that it is protecting (usually an integrated circuit or CPU). Fan-cooled aluminium heatsinks were originally the norm for desktop computers, but nowadays many heatsinks feature copper base-plates or are entirely made of copper. Dust buildup between the metal fins of a heatsink gradually reduces efficiency, but can be countered with a gas duster by blowing away the dust along with any other unwanted excess material. Passive heatsinks are commonly found on older CPUs, parts that do not get very hot (such as the chipset), and low-power computers. Usually a heatsink is attached to the integrated heat spreader (IHS), essentially a large, flat plate attached to the CPU, with conduction paste layered between. This dissipates or spreads the heat locally. Unlike a heatsink, a spreader is meant to redistribute heat, not to remove it. In addition, the IHS protects the fragile CPU. Passive cooling involves no fan noise as
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
forces move air over the heatsink.


Other techniques


Liquid immersion cooling

Another growing trend due to the increasing heat density of computers, GPUs, FPGAs, and ASICs is to immerse the entire computer or select components in a thermally, but not electrically, conductive liquid. Although rarely used for the cooling of personal computers, liquid immersion is a routine method of cooling large power distribution components such as
transformers ''Transformers'' is a media franchise produced by American toy company Hasbro and Japanese toy company Takara Tomy. It primarily follows the Autobots and the Decepticons, two alien robot factions at war that can transform into other forms, suc ...
. It is also becoming popular with data centers. Personal computers cooled in this manner may not require either fans or pumps, and may be cooled exclusively by passive heat exchange between the computer hardware and the enclosure it is placed in. A heat exchanger (i.e.
heater core A heater core is a radiator-like device used in heating the cabin of a vehicle. Hot coolant from the vehicle's engine is passed through a winding tube of the core, a heat exchanger between coolant and cabin air. Fins attached to the core tubes ser ...
or radiator) might still be needed though, and the piping also needs to be placed correctly. The coolant used must have sufficiently low
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
not to interfere with the normal operation of the computer. If the liquid is somewhat electrically conductive, it may cause electrical shorts between components or traces and permanently damage them. For these reasons, it is preferred that the liquid be an insulator (
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
) and not conduct electricity. A wide variety of liquids exist for this purpose, including
transformer oil Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers (wet transformers), some types of high-voltage capacitors, fluorescent lamp b ...
s, synthetic single-phase and dual phase dielectric coolants such as 3M
Fluorinert Fluorinert is the trademarked brand name for the line of electronics coolant liquids sold commercially by 3M. As perfluorinated compounds (PFCs), all Fluorinert variants have an extremely high Global Warming Potential (GWP), so should be used wit ...
or 3M Novec. Non-purpose oils, including cooking, motor and
silicone oil A silicone oil is any liquid polymerized siloxane with organic side chains. The most important member is polydimethylsiloxane. These polymers are of commercial interest because of their relatively high thermal stability, lubricating, and Liquid di ...
s, have been successfully used for cooling personal computers. Some fluids used in immersion cooling, especially hydrocarbon based materials such as mineral oils, cooking oils, and organic esters, may degrade some common materials used in computers such as rubbers, polyvinyl chloride (PVC), and
thermal grease Thermal paste (also called thermal compound, thermal grease, thermal interface material (TIM), thermal gel, heat paste, heat sink compound, heat sink paste or CPU grease) is a thermally conductive (but usually electrically insulating) chemi ...
s. Therefore it is critical to review the material compatibility of such fluids prior to use. Mineral oil in particular has been found to have negative effects on PVC and rubber-based wire insulation. Thermal pastes used to transfer heat to heatsinks from processors and graphic cards has been reported to dissolve in some liquids, however with negligible impact to cooling, unless the components were removed and operated in air. Evaporation, especially for 2-phase coolants, can pose a problem, and the liquid may require either to be regularly refilled or sealed inside the computer's enclosure. Immersion cooling can allow for extremely low PUE values of 1.05, vs air cooling's 1.35, and allow for up to 100 KW of computing power (heat dissipation, TDP) per
19-inch rack A 19-inch rack is a standardized frame or enclosure for mounting multiple electronic equipment modules. Each module has a front panel that is wide. The 19 inch dimension includes the edges or "ears" that protrude from each side of the equ ...
, as opposed to air cooling, which usually handles up to 23 KW.


Waste heat reduction

Where powerful computers with many features are not required, less powerful computers or ones with fewer features can be used. a
VIA Via or VIA may refer to the following: Science and technology * MOS Technology 6522, Versatile Interface Adapter * ''Via'' (moth), a genus of moths in the family Noctuidae * Via (electronics), a through-connection * VIA Technologies, a Taiwan ...
EPIA VIA EPIA (''VIA Embedded Platform Innovative Architecture'') is a series of mini-ITX, em-ITX, nano-ITX, pico-ITX and pico-ITXe motherboards with integrated VIA processor Processor may refer to: Computing Hardware * Processor (computing) ...
motherboard with CPU typically dissipates approximately 25 watts of heat, whereas a more capable Pentium 4 motherboard and CPU typically dissipates around 140 watts. Computers can be powered with
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even ...
from an external
power supply A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a r ...
unit which does not generate heat inside the computer case. The replacement of
cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), pictu ...
(CRT) displays by more efficient thin-screen
liquid crystal display A liquid-crystal display (LCD) is a flat panel display, flat-panel display or other Electro-optic modulator, electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liqui ...
(LCD) ones in the early twenty-first century has reduced power consumption significantly.


Heat-sinks

A component may be fitted in good thermal contact with a heatsink, a passive device with large thermal capacity and with a large surface area relative to its volume. Heatsinks are usually made of a metal with high
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
such as aluminium or copper, and incorporate fins to increase surface area. Heat from a relatively small component is transferred to the larger heatsink; the equilibrium temperature of the component plus heatsink is much lower than the component's alone would be. Heat is carried away from the heatsink by convective or fan-forced airflow. Fan cooling is often used to cool processors and graphics cards that consume significant amounts of electrical energy. In a computer, a typical heat-generating component may be manufactured with a flat surface. A block of metal with a corresponding flat surface and finned construction, sometimes with an attached fan, is clamped to the component. To fill poorly conducting air gaps due to imperfectly flat and smooth surfaces, a thin layer of
thermal grease Thermal paste (also called thermal compound, thermal grease, thermal interface material (TIM), thermal gel, heat paste, heat sink compound, heat sink paste or CPU grease) is a thermally conductive (but usually electrically insulating) chemi ...
, a thermal pad, or
thermal adhesive Thermal adhesive is a type of thermally conductive glue used for electronic components and heat sinks. It can be available as a paste (similar to thermal paste) or as a double-sided tape. It is commonly used to bond integrated circuits to heats ...
may be placed between the component and heatsink. Heat is removed from the heatsink by
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
, to some extent by
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
, and possibly by
conduction Conductor or conduction may refer to: Music * Conductor (music), a person who leads a musical ensemble, such as an orchestra. * Conductor (album), ''Conductor'' (album), an album by indie rock band The Comas * Conduction, a type of structured f ...
if the heatsink is in thermal contact with, say, the metal case. Inexpensive fan-cooled
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
heatsinks are often used on standard desktop computers. Heatsinks with
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
base-plates, or made of copper, have better thermal characteristics than those made of aluminium. A copper heatsink is more effective than an aluminium unit of the same size, which is relevant with regard to the high-power-consumption components used in high-performance computers. Passive heatsinks are commonly found on older CPUs, parts that do not dissipate much power (such as the chipset), computers with low-power processors, and equipment where silent operation is critical and fan noise unacceptable. Usually a heatsink is clamped to the integrated heat spreader (IHS), a flat metal plate the size of the CPU package which is part of the CPU assembly and spreads the heat locally. A thin layer of thermal compound is placed between them to compensate for surface imperfections. The spreader's primary purpose is to redistribute heat. The heatsink fins improve its efficiency. Several brands of DDR2, DDR3, DDR4 and DDR5 DRAM memory modules are fitted with a finned heatsink clipped onto the top edge of the module. The same technique is used for video cards that use a finned passive heatsink on the GPU. Dust tends to build up in the crevices of finned heatsinks, particularly with the high airflow produced by fans. This keeps the air away from the hot component, reducing cooling effectiveness; however, removing the dust restores effectiveness.


Peltier (thermoelectric) cooling

Peltier junctions are generally only around 10-15% as efficient as the ideal
refrigerator A refrigerator, colloquially fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump (mechanical, electronic or chemical) that transfers heat from its inside to its external environment so th ...
(
Carnot cycle A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynam ...
), compared with 40–60% achieved by conventional compression cycle systems (reverse
Rankine Rankine is a surname. Notable people with the surname include: * William Rankine (1820–1872), Scottish engineer and physicist ** Rankine body an elliptical shape of significance in fluid dynamics, named for Rankine ** Rankine scale, an absolute-te ...
systems using compression/expansion). Due to this lower efficiency, thermoelectric cooling is generally only used in environments where the solid state nature (no
moving parts Machines include both fixed and moving parts. The moving parts have controlled and constrained motions. Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include ...
, low maintenance, compact size, and orientation insensitivity) outweighs pure efficiency. Modern TECs use several stacked units each composed of dozens or hundreds of thermocouples laid out next to each other, which allows for a substantial amount of
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
. A combination of
bismuth Bismuth is a chemical element with the Symbol (chemistry), symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental ...
and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
is most commonly used for the thermocouples. As active heat pumps which consume power, TECs can produce temperatures below ambient, impossible with passive heatsinks, radiator-cooled
liquid cooling Liquid cooling refers to cooling by means of the convection or circulation of a liquid. Examples of liquid cooling technologies include: * Cooling by convection or circulation of coolant, including water cooling * Liquid cooling and ventilatio ...
, and heatpipe HSFs. However, while pumping heat, a Peltier module will typically consume more electric power than the heat amount being pumped. It is also possible to use a Peltier element together with a high pressure refrigerant (two phase cooling) to cool the CPU.


Liquid cooling

Liquid cooling is a highly effective method of removing excess heat, with the most common
heat transfer fluid In fluid thermodynamics, a heat transfer fluid is a gas or liquid that takes part in heat transfer by serving as an intermediary in cooling on one side of a process, transporting and storing thermal energy, and heating on another side of a proc ...
in desktop PCs being (distilled) water. The advantages of water cooling over
air cooling Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by maki ...
include water's higher
specific heat capacity In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat t ...
and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
. The principle used in a typical (active) liquid cooling system for computers is identical to that used in an automobile's
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combus ...
, with the water being circulated by a water pump through a waterblock mounted on the CPU (and sometimes additional components as GPU and northbridge) and out to a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
, typically a
radiator Radiators are heat exchangers used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics. A radiator is always a ...
. The radiator is itself usually cooled additionally by means of a fan. Besides a fan, it could possibly also be cooled by other means, such as a Peltier cooler (although Peltier elements are most commonly placed directly on top of the hardware to be cooled, and the coolant is used to conduct the heat away from the hot side of the Peltier element). A coolant reservoir is often also connected to the system. Besides active liquid cooling systems, passive liquid cooling systems are also sometimes used. These systems often leave out a fan or a water pump, theoretically increasing their reliability and making them quieter than active systems. Downsides of these systems are that they are much less efficient in discarding the heat and thus also need to have much more coolantand thus a much bigger coolant reservoirgiving the coolant more time to cool down. Liquids allow the transfer of more heat from the parts being cooled than air, making liquid cooling suitable for overclocking and high performance computer applications. Compared to air cooling, liquid cooling is also influenced less by the ambient temperature. Liquid cooling's comparatively low noise-level compares favourably to that of air cooling, which can become quite noisy. Disadvantages of liquid cooling include complexity and the potential for a coolant leak. Leaked water (and any additives in the water) can damage electronic components with which it comes into contact, and the need to test for and repair leaks makes for more complex and less reliable installations. (The first major foray into the field of liquid-cooled personal computers for general use, the high-end versions of
Apple An apple is an edible fruit produced by an apple tree (''Malus domestica''). Apple fruit tree, trees are agriculture, cultivated worldwide and are the most widely grown species in the genus ''Malus''. The tree originated in Central Asia, wh ...
's
Power Mac G5 The Power Mac G5 is a series of personal computers designed, manufactured, and sold by Apple Computer, Inc. from 2003 to 2006 as part of the Power Mac series. When introduced, it was the most powerful computer in Apple's Macintosh lineup, and ...
, was ultimately doomed by a propensity for coolant leaks.) An air-cooled heatsink is generally much simpler to build, install, and maintain than a water cooling solution, although CPU-specific water cooling kits can also be found, which may be just as easy to install as an air cooler. These are not limited to CPUs, and liquid cooling of GPU cards is also possible. While originally limited to
mainframe A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise ...
computers, liquid cooling has become a practice largely associated with
overclocking In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated spe ...
in the form of either manufactured all-in-one (AIO) kits or do-it-yourself setups assembled from individually gathered parts. The past few years have seen an increase in the popularity of liquid cooling in pre-assembled, moderate to high performance, desktop computers. Sealed ("closed-loop") systems incorporating a small pre-filled radiator, fan, and waterblock simplify the installation and maintenance of water cooling at a slight cost in cooling effectiveness relative to larger and more complex setups. Liquid cooling is typically combined with air cooling, using liquid cooling for the hottest components, such as CPUs or GPUs, while retaining the simpler and cheaper air cooling for less demanding components. The IBM
Aquasar Aquasar is a supercomputer (a high-performance computer) prototype created by IBM Labs in collaboration with ETH Zurich in Zürich, Switzerland and ETH Lausanne in Lausanne, Switzerland. While most supercomputers use air as their coolant of choi ...
system uses ''hot water cooling'' to achieve energy efficiency, the water being used to heat buildings as well. Since 2011, the effectiveness of water cooling has prompted a series of all-in-one (AIO) water cooling solutions. AIO solutions result in a much simpler to install unit, and most units have been reviewed positively by review sites.


Heat pipes and vapor chambers

A heat pipe is a hollow tube containing a heat transfer liquid. The liquid absorbs heat and evaporates at one end of the pipe. The vapor travels to the other (cooler) end of the tube, where it condenses, giving up its
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition. Latent heat can be understo ...
. The liquid returns to the hot end of the tube by gravity or
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
and repeats the cycle. Heat pipes have a much higher effective thermal conductivity than solid materials. For use in computers, the heatsink on the CPU is attached to a larger radiator heatsink. Both heatsinks are hollow, as is the attachment between them, creating one large heat pipe that transfers heat from the CPU to the radiator, which is then cooled using some conventional method. This method is usually used when space is tight, as in small form-factor PCs and laptops, or where no fan noise can be tolerated, as in audio production. Because of the efficiency of this method of cooling, many desktop CPUs and GPUs, as well as high end chipsets, use heat pipes or vapor chambers in addition to active fan-based cooling and passive heatsinks to remain within safe operating temperatures. A vapor chamber operates on the same principles as a heat pipe but takes on the form of a slab or sheet instead of a pipe. Heat pipes may be placed vertically on top and form part of vapor chambers. Vapor chambers may also be used on high-end
smartphones A smartphone is a portable computer device that combines mobile telephone and computing functions into one unit. They are distinguished from feature phones by their stronger hardware capabilities and extensive mobile operating systems, which ...
.


Electrostatic air movement and corona discharge effect cooling

The cooling technology under development by Kronos and Thorn Micro Technologies employs a device called an ionic wind pump (also known as an electrostatic fluid accelerator). The basic operating principle of an ionic wind pump is
corona discharge A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air (or other fluid) has undergone electrical breakdown ...
, an electrical discharge near a charged conductor caused by the ionization of the surrounding air. The corona discharge cooler developed by Kronos works in the following manner: A high electric field is created at the tip of the cathode, which is placed on one side of the CPU. The high energy potential causes the oxygen and nitrogen molecules in the air to become ionized (positively charged) and create a corona (a halo of charged particles). Placing a grounded anode at the opposite end of the CPU causes the charged ions in the corona to accelerate towards the anode, colliding with neutral air molecules on the way. During these collisions, momentum is transferred from the ionized gas to the neutral air molecules, resulting in movement of gas towards the anode. The advantages of the corona-based cooler are its lack of moving parts, thereby eliminating certain reliability issues and operating with a near-zero noise level and moderate energy consumption.


Soft cooling

Soft cooling is the practice of utilizing software to take advantage of CPU power saving technologies to minimize energy use. This is done using halt instructions to turn off or put in standby state CPU subparts that aren't being used or by
underclocking Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, redu ...
the CPU. While resulting in lower total speeds, this can be very useful if overclocking a CPU to improve user experience rather than increase raw processing power, since it can prevent the need for noisier cooling. Contrary to what the term suggests, it is not a form of cooling but of reducing heat creation.


Undervolting

Undervolting is a practice of running the CPU or any other component with voltages below the device specifications. An undervolted component draws less power and thus produces less heat. The ability to do this varies by manufacturer, product line, and even different production runs of the same product (as well as that of other components in the system), but processors are often specified to use voltages higher than strictly necessary. This tolerance ensures that the processor will have a higher chance of performing correctly under sub-optimal conditions, such as a lower-quality motherboard or low power supply voltages. Below a certain limit, the processor will not function correctly, although undervolting too far does not typically lead to permanent hardware damage (unlike overvolting). Undervolting is used for quiet systems, as less cooling is needed because of the reduction of heat production, allowing noisy fans to be omitted. It is also used when battery charge life must be maximized.


Chip-integrated

Conventional cooling techniques all attach their "cooling" component to the outside of the computer chip package. This "attaching" technique will always exhibit some thermal resistance, reducing its effectiveness. The heat can be more efficiently and quickly removed by directly cooling the local hot spots of the chip, within the package. At these locations, power dissipation of over 300 W/cm2 (typical CPU is less than 100 W/cm2) can occur, although future systems are expected to exceed 1000 W/cm2. This form of local cooling is essential to developing high power density chips. This ideology has led to the investigation of integrating cooling elements into the computer chip. Currently there are two techniques: micro-channel heatsinks, and jet impingement cooling. In micro-channel heatsinks, channels are fabricated into the silicon chip (CPU), and coolant is pumped through them. The channels are designed with very large surface area which results in large heat transfers. Heat dissipation of 3000 W/cm2 has been reported with this technique. The heat dissipation can be further increased if two-phase flow cooling is applied. Unfortunately, the system requires large pressure drops, due to the small channels, and the
heat flux Heat flux or thermal flux, sometimes also referred to as ''heat flux density'', heat-flow density or ''heat flow rate intensity'' is a flow of energy per unit area per unit time. In SI its units are watts per square metre (W/m2). It has both a ...
is lower with dielectric coolants used in electronic cooling. Another local chip cooling technique is jet impingement cooling. In this technique, a coolant is flowed through a small orifice to form a jet. The jet is directed toward the surface of the CPU chip, and can effectively remove large heat fluxes. Heat dissipation of over 1000 W/cm2 has been reported. The system can be operated at lower pressure in comparison to the micro-channel method. The heat transfer can be further increased using two-phase flow cooling and by integrating return flow channels (hybrid between micro-channel heatsinks and jet impingement cooling).


Phase-change cooling

Phase-change cooling is an extremely effective way to cool the processor. A vapor compression phase-change cooler is a unit that usually sits underneath the PC, with a tube leading to the processor. Inside the unit is a compressor of the same type as in an
air conditioner Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
. The compressor compresses a gas (or mixture of gases) which comes from the evaporator (CPU cooler discussed below). Then, the very hot high-pressure vapor is pushed into the condenser (heat dissipation device) where it condenses from a hot gas into a liquid, typically subcooled at the exit of the condenser then the liquid is fed to an expansion device (restriction in the system) to cause a drop in pressure a vaporize the fluid (cause it to reach a pressure where it can boil at the desired temperature); the expansion device used can be a simple capillary tube to a more elaborate thermal expansion valve. The liquid evaporates (changing phase), absorbing the heat from the processor as it draws extra energy from its environment to accommodate this change (see
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition. Latent heat can be understo ...
). The evaporation can produce temperatures reaching around . The liquid flows into the evaporator cooling the CPU, turning into a vapor at low pressure. At the end of the evaporator this gas flows down to the compressor and the cycle begins over again. This way, the processor can be cooled to temperatures ranging from , depending on the load, wattage of the processor, the refrigeration system (see
refrigeration The term refrigeration refers to the process of removing heat from an enclosed space or substance for the purpose of lowering the temperature.International Dictionary of Refrigeration, http://dictionary.iifiir.org/search.phpASHRAE Terminology, ht ...
) and the gas mixture used. This type of system suffers from a number of issues (cost, weight, size, vibration, maintenance, cost of electricity, noise, need for a specialized computer tower) but, mainly, one must be concerned with dew point and the proper insulation of all sub-ambient surfaces that must be done (the pipes will sweat, dripping water on sensitive electronics). Alternately, a new breed of the cooling system is being developed, inserting a pump into the
thermosiphon Thermosiphon (or thermosyphon) is a method of passive heat exchange, based on natural convection, which circulates a fluid without the necessity of a mechanical pump. Thermosiphoning is used for circulation of liquids and volatile gases in heat ...
loop. This adds another degree of flexibility for the design engineer, as the heat can now be effectively transported away from the heat source and either reclaimed or dissipated to ambient. Junction temperature can be tuned by adjusting the system pressure; higher pressure equals higher fluid saturation temperatures. This allows for smaller condensers, smaller fans, and/or the effective dissipation of heat in a high ambient temperature environment. These systems are, in essence, the next generation fluid cooling paradigm, as they are approximately 10 times more efficient than single-phase water. Since the system uses a dielectric as the heat transport medium, leaks do not cause a catastrophic failure of the electric system. This type of cooling is seen as a more extreme way to cool components since the units are relatively expensive compared to the average desktop. They also generate a significant amount of noise, since they are essentially refrigerators; however, the compressor choice and air cooling system is the main determinant of this, allowing for flexibility for noise reduction based on the parts chosen. A "thermosiphon" traditionally refers to a closed system consisting of several pipes and/or chambers, with a larger chamber containing a small reservoir of liquid (often having a boiling point just above ambient temperature, but not necessarily). The larger chamber is as close to the heat source and designed to conduct as much heat from it into the liquid as possible, for example, a CPU cold plate with the chamber inside it filled with the liquid. One or more pipes extend upward into some sort of radiator or similar heat dissipation area, and this is all set up such that the CPU heats the reservoir and liquid it contains, which begins boiling, and the vapor travels up the tube(s) into the radiator/heat dissipation area, and then after condensing, drips back down into the reservoir, or runs down the sides of the tube. This requires no moving parts, and is somewhat similar to a heat pump, except that capillary action is not used, making it potentially better in some sense (perhaps most importantly, better in that it is much easier to build, and much more customizable for specific use cases and the flow of coolant/vapor can be arranged in a much wider variety of positions and distances, and have far greater thermal mass and maximum capacity compared to heat pipes which are limited by the amount of coolant present and the speed and flow rate of coolant that capillary action can achieve with the wicking used, often sintered copper powder on the walls of the tube, which have a limited flow rate and capacity.)


Liquid nitrogen

As
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wide ...
boils at , far below the freezing point of water, it is valuable as an extreme coolant for short overclocking sessions. In a typical installation of liquid nitrogen cooling, a copper or aluminium pipe is mounted on top of the processor or graphics card. After the system has been heavily insulated against condensation, the liquid nitrogen is poured into the pipe, resulting in temperatures well below . Evaporation devices ranging from cut out heatsinks with pipes attached to custom milled copper containers are used to hold the nitrogen as well as to prevent large temperature changes. However, after the nitrogen evaporates, it has to be refilled. In the realm of personal computers, this method of cooling is seldom used in contexts other than
overclocking In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated spe ...
trial-runs and record-setting attempts, as the CPU will usually expire within a relatively short period of time due to temperature
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
caused by changes in internal temperature. Although liquid nitrogen is non-flammable, it can condense
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
directly from air. Mixtures of
liquid oxygen Liquid oxygen—abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an applica ...
and flammable materials can be dangerously explosive. Liquid nitrogen cooling is, generally, only used for processor benchmarking, due to the fact that continuous usage may cause permanent damage to one or more parts of the computer and, if handled in a careless way, can even harm the user, causing
frostbite Frostbite is a skin injury that occurs when exposed to extreme low temperatures, causing the freezing of the skin or other tissues, commonly affecting the fingers, toes, nose, ears, cheeks and chin areas. Most often, frostbite occurs in the han ...
.


Liquid helium

Liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, colder than liquid nitrogen, has also been used for cooling. Liquid helium boils at , and temperatures ranging from have been measured from the heatsink. However, liquid helium is more expensive and more difficult to store and use than liquid nitrogen. Also, extremely low temperatures can cause integrated circuits to stop functioning. Silicon-based semiconductors, for example, will freeze out at around .


Optimization

Cooling can be improved by several techniques which may involve additional expense or effort. These techniques are often used, in particular, by those who run parts of their computer (such as the CPU and GPU) at higher voltages and frequencies than specified by manufacturer (
overclocking In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated spe ...
), which increases heat generation. The installation of higher performance, non-stock cooling may also be considered
modding ''Modding'' is a slang expression derived from the English verb " to modify". The term refers to modification of hardware, software, or anything else, to perform a function not originally intended by the designer, or to achieve bespoke specific ...
. Many overclockers simply buy more efficient, and often, more expensive fan and heatsink combinations, while others resort to more exotic ways of computer cooling, such as liquid cooling, Peltier effect heatpumps, heat pipe or phase change cooling. There are also some related practices that have a positive impact in reducing system temperatures:


Thermally conductive compounds

Often called Thermal Interface Material (TIM). Perfectly flat surfaces in contact give optimal cooling, but perfect flatness and absence of microscopic air gaps is not practically possible, particularly in
mass-produced Mass production, also known as flow production or continuous production, is the production of substantial amounts of standardized products in a constant flow, including and especially on assembly lines. Together with job production and batch ...
equipment. A very thin skim of
thermal compound Thermal paste (also called thermal compound, thermal grease, thermal interface material (TIM), thermal gel, heat paste, heat sink compound, heat sink paste or CPU grease) is a thermally conductive (but usually electrically insulating) chemi ...
, which is much more thermally conductive than air, though much less so than metal, can improve thermal contact and cooling by filling in the air gaps. If only a small amount of compound just sufficient to fill the gaps is used, the best temperature reduction will be obtained. There is much debate about the merits of compounds, and overclockers often consider some compounds to be superior to others. The main consideration is to use the minimal amount of thermal compound required to even out surfaces, as the thermal conductivity of compound is typically 1/3 to 1/400 that of metal, though much better than air. The conductivity of the heatsink compound ranges from about 0.5 to 80W/mK (see articles); that of aluminium is about 200, that of air about 0.02. Heat-conductive pads are also used, often fitted by manufacturers to heatsinks. They are less effective than properly applied thermal compound, but simpler to apply and, if fixed to the heatsink, cannot be omitted by users unaware of the importance of good thermal contact, or replaced by a thick and ineffective layer of compound. Unlike some techniques discussed here, the use of thermal compound or padding is almost universal when dissipating significant amounts of heat.


Heat sink lapping

Mass-produced CPU heat spreaders and heatsink bases are never perfectly flat or smooth; if these surfaces are placed in the best contact possible, there will be air gaps which reduce heat conduction. This can easily be mitigated by the use of thermal compound, but for the best possible results surfaces must be as flat as possible. This can be achieved by a laborious process known as
lapping Lapping is a machining process in which two surfaces are rubbed together with an abrasive between them, by hand movement or using a machine. Lapping often follows other subtractive processes with more aggressive material removal as a first step ...
, which can reduce CPU temperature by typically .


Rounded cables

Most older PCs use flat
ribbon cable A ribbon cable (also known as multi-wire planar cable) is a cable with many conducting wires running parallel to each other on the same flat plane. As a result, the cable is wide and flat. Its name comes from its resemblance to a piece of ribb ...
s to connect storage drives ( IDE or
SCSI Small Computer System Interface (SCSI, ) is a set of standards for physically connecting and transferring data between computers and peripheral devices. The SCSI standards define commands, protocols, electrical, optical and logical interface ...
). These large flat cables greatly impede airflow by causing drag and turbulence. Overclockers and modders often replace these with rounded cables, with the conductive wires bunched together tightly to reduce surface area. Theoretically, the parallel strands of conductors in a ribbon cable serve to reduce
crosstalk In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, induc ...
(signal carrying conductors inducing signals in nearby conductors), but there is no empirical evidence of rounding cables reducing performance. This may be because the length of the cable is short enough so that the effect of crosstalk is negligible. Problems usually arise when the cable is not electromagnetically protected and the length is considerable, a more frequent occurrence with older network cables. These computer cables can then be cable tied to the chassis or other cables to further increase airflow. This is less of a problem with new computers that use
serial ATA SATA (Serial AT Attachment) is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard t ...
which has a much narrower cable.


Airflow

The colder the cooling medium (the air), the more effective the
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or phase change. Temperature lowering achieved by any other means may also be called cooling.ASHRAE Terminology, https://www.ashrae.org/technical-resources/free-resources/as ...
. Cooling air temperature can be improved with these guidelines: * Supply cool air to the hot components as directly as possible. Examples are air snorkels and tunnels that feed outside air directly and exclusively to the CPU or GPU cooler. For example, the BTX case design prescribes a CPU air tunnel. * Expel warm air as directly as possible. Examples are: Conventional PC (
ATX ATX (Advanced Technology eXtended) is a motherboard and power supply configuration specification developed by Intel in 1995 to improve on previous de facto standards like the AT design. It was the first major change in desktop computer enclo ...
) power supplies blow the warm air out the back of the case. Many dual-slot
graphics card A graphics card (also called a video card, display card, graphics adapter, VGA card/VGA, video adapter, display adapter, or mistakenly GPU) is an expansion card which generates a feed of output images to a display device, such as a computer moni ...
designs blow the warm air through the cover of the adjacent slot. There are also some aftermarket coolers that do this. Some CPU cooling designs blow the warm air directly towards the back of the case, where it can be ejected by a case fan. * Air that has already been used to spot-cool a component should not be reused to spot-cool a different component (this follows from the previous items). The BTX case design violates this rule, since it uses the CPU cooler's exhaust to cool the chipset and often the graphics card. One may come across old or ultra-low-budget ATX cases which feature a PSU mount in the top. Most modern ATX cases do however have a PSU mount in the bottom of the case with a filtered air vent directly beneath the PSU. * Prefer cool intake air, avoid inhaling exhaust air (outside air above or near the exhausts). For example, a CPU cooling air duct at the back of a tower case would inhale warm air from a graphics card exhaust. Moving all exhausts to one side of the case, conventionally the back/top, helps to keep the intake air cool. * Hiding cables behind motherboard tray or simply apply ziptie and tucking cables away to provide unhindered airflow. Fewer fans but strategically placed will improve the airflow internally within the PC and thus lower the overall internal case temperature in relation to ambient conditions. The use of larger fans also improves efficiency and lowers the amount of waste heat along with the amount of noise generated by the fans while in operation. There is little agreement on the effectiveness of different fan placement configurations, and little in the way of systematic testing has been done. For a rectangular PC (ATX) case, a fan in the front with a fan in the rear and one in the top has been found to be a suitable configuration. However, AMD's (somewhat outdated) system cooling guidelines notes that "A front cooling fan does not seem to be essential. In fact, in some extreme situations, testing showed these fans to be recirculating hot air rather than introducing cool air." It may be that fans in the side panels could have a similar detrimental effect—possibly through disrupting the normal air flow through the case. However, this is unconfirmed and probably varies with the configuration.


Air pressure

Loosely speaking, positive pressure means intake into the case is stronger than exhaust from the case. This configuration results in pressure inside of the case being higher than in its environment. Negative pressure means exhaust is stronger than intake. This results in internal air pressure being lower than in the environment. Both configurations have benefits and drawbacks, with positive pressure being the more popular of the two configurations. Negative pressure results in the case pulling air through holes and vents separate from the fans, as the internal gases will attempt to reach an equilibrium pressure with the environment. Consequently, this results in dust entering the computer in all locations. Positive pressure in combination with filtered intake solves this issue, as air will only incline to be exhausted through these holes and vents in order to reach an equilibrium with its environment. Dust is then unable to enter the case except through the intake fans, which need to possess dust filters.


Computer types


Desktops

Desktop computer A desktop computer (often abbreviated desktop) is a personal computer designed for regular use at a single location on or near a desk due to its size and power requirements. The most common configuration has a case that houses the power supply ...
s typically use one or more fans for cooling. While almost all desktop power supplies have at least one built-in fan, power supplies should never draw heated air from within the case, as this results in higher PSU operating temperatures which decrease the PSU's energy efficiency, reliability and overall ability to provide a steady supply of power to the computer's internal components. For this reason, all modern ATX cases (with some exceptions found in ultra-low-budget cases) feature a power supply mount in the bottom, with a dedicated PSU air intake (often with its own filter) beneath the mounting location, allowing the PSU to draw cool air from beneath the case. Most manufacturers recommend bringing cool, fresh air in at the bottom front of the case, and exhausting warm air from the top rear. If fans are fitted to force air into the case more effectively than it is removed, the pressure inside becomes higher than outside, referred to as a "positive" airflow (the opposite case is called "negative" airflow). Worth noting is that positive internal pressure only prevents dust accumulating in the case if the air intakes are equipped with dust filters. A case with negative internal pressure will suffer a higher rate of dust accumulation even if the intakes are filtered, as the negative pressure will draw dust in through any available opening in the case The air flow inside the typical desktop case is usually not strong enough for a passive CPU heatsink. Most desktop heatsinks are active including one or even multiple directly attached fans or blowers.


Servers


Server coolers

Each server can have an independent internal cooler system; Server cooling fans in (1 U) enclosures are usually located in the middle of the enclosure, between the hard drives at the front and passive CPU heatsinks at the rear. Larger (higher) enclosures also have exhaust fans, and from approximately 4U they may have active heatsinks. Power supplies generally have their own rear-facing exhaust fans.


Rack-mounted coolers

Rack cabinet is a typical enclosure for horizontally mounted servers. Air typically drawn in at the front of the rack and exhausted at the rear. Each cabinet can have additional cooling options; for example, they can have a
Close Coupled Cooling Close Coupled Cooling is a last generation cooling system particularly used in data centers. The goal of close coupled cooling is to bring heat transfer closest to its source: the equipment rack. By moving the air conditioner closer to the equipment ...
attachable module or integrated with cabinet elements (like cooling doors in
iDataPlex System x is a line of x86 servers produced by IBM – and later by Lenovo – as a sub-brand of IBM's ''System'' brand, alongside IBM Power Systems, IBM System z and IBM System Storage. In addition, IBM System x was the main component of the I ...
server rack). Another way of accommodating large numbers of systems in a small space is to use blade chassis, oriented vertically rather than horizontally, to facilitate
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
. Air heated by the hot components tends to rise, creating a natural air flow along the boards (
stack effect The stack effect or chimney effect is the movement of air into and out of buildings through unsealed openings, chimneys, flue-gas stacks, or other containers, resulting from air buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor a ...
), cooling them. Some manufacturers take advantage of this effect.The tower cas
Silverstone Raven RV01
has been designed to make use of the stack effect


Data center cooling

Because
data center A data center (American English) or data centre (British English)See spelling differences. is a building, a dedicated space within a building, or a group of buildings used to house computer systems and associated components, such as telecommunic ...
s typically contain large numbers of computers and other power-dissipating devices, they risk equipment overheating; extensive
HVAC Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HV ...
systems are used to prevent this. Often a raised floor is used so the area under the floor may be used as a large
plenum Plenum may refer to: * Plenum chamber, a chamber intended to contain air, gas, or liquid at positive pressure * Plenism, or ''Horror vacui'' (physics) the concept that "nature abhors a vacuum" * Plenum (meeting), a meeting of a deliberative assem ...
for cooled air and power cabling. Direct Contact Liquid Cooling has emerged more efficient than air cooling options, resulting in smaller footprint, lower capital requirements and lower operational costs than air cooling. It uses warm liquid instead of air to move heat away from the hottest components. Energy efficiency gains from liquid cooling is also driving its adoption.


Laptops

Laptops present a difficult mechanical airflow design, power dissipation, and cooling challenge. Constraints specific to laptops include: the device as a whole has to be as light as possible; the form factor has to be built around the standard keyboard layout; users are very close, so noise must be kept to a minimum, and the case exterior temperature must be kept low enough to be used on a lap. Cooling generally uses forced air cooling but heat pipes and the use of the metal chassis or case as a passive heatsink are also common. Solutions to reduce heat include using lower power-consumption
ARM In human anatomy, the arm refers to the upper limb in common usage, although academically the term specifically means the upper arm between the glenohumeral joint (shoulder joint) and the elbow joint. The distal part of the upper limb between th ...
or
Intel Atom Intel Atom is the brand name for a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Cor ...
processors. File:EBHeatsink.jpg, A laptop computer's CPU and GPU heatsinks, and copper heat pipes transferring heat to an exhaust fan expelling hot air File:HEATPIPE FIN STACK ASSEMBLY.jpg, The working fluid in the heatpipes transfers heat away from the laptop's CPU and video processor over to the fin stack. Heat is dissipated from the fin stack by method of convective heat transfer from a fan. This fin stack is from an
HP ZBook HP ZBook is a brand of mobile workstations made by HP Inc. Introduced in September 2013, it is a successor to HP's previous mobile workstations in the HP EliteBook series. The ZBook mainly competes against PCs such as Dell's Precision and Lenovo' ...
mobile workstation laptop. File:EBExhaust.JPG, The heat is expelled from a laptop by an exhaust centrifugal fan.


Mobile devices

Mobile devices usually have no discrete cooling systems, as mobile CPU and GPU chips are designed for maximum power efficiency due to the constraints of the device's battery. Some higher performance devices may include a heat spreader that aids in transferring heat to the external case of a phone or tablet.


See also

*
CPU power dissipation Processor power dissipation or processing unit power dissipation is the process in which computer processors consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits. Power manag ...
*
Thermal design power The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate ...
*
Thermal management of electronic devices and systems All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy int ...


References


External links


CPU Cooler Rules of Thumb


* DIY Submersion Cooling (Fish Tank + Mineral Oil) ttps://web.archive.org/web/20110711072314/http://forums.gametrailers.com/thread/whats-the-most-expensive-compu/1005598 Gametrailers.com Forum- Video
[1
/nowiki>.html" ;"title="">[1
/nowiki>">">[1
/nowiki>br>[2
/nowiki>]
[3
/nowiki>]. * {{DEFAULTSORT:Cooling Computer hardware cooling, Central processing unit