A laser is a device that emits
light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
through a process of
optical amplification
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from ...
based on the
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
. The word "laser" is an
acronym
An acronym is a word or name formed from the initial components of a longer name or phrase. Acronyms are usually formed from the initial letters of words, as in ''NATO'' (''North Atlantic Treaty Organization''), but sometimes use syllables, as ...
for "light amplification by stimulated emission of radiation".
The first laser was built in 1960 by
Theodore H. Maiman
Theodore Harold Maiman (July 11, 1927 – May 5, 2007) was an American engineer and physicist who is widely credited with the invention of the laser.Johnson, John Jr. (May 11, 2008). "Theodore H. Maiman, at age 32; scientist created the first LA ...
at
Hughes Research Laboratories
Hughes may refer to:
People
* Hughes (surname)
* Hughes (given name)
Places Antarctica
* Hughes Range (Antarctica), Ross Dependency
* Mount Hughes, Oates Land
* Hughes Basin, Oates Land
* Hughes Bay, Graham Land
* Hughes Bluff, Victoria Lan ...
, based on theoretical work by
Charles Hard Townes
Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American physicist. Townes worked on the theory and application of the maser, for which he obtained the fundamental patent, and other work in quantum electronics associated wi ...
and
Arthur Leonard Schawlow
Arthur Leonard Schawlow (May 5, 1921 – April 28, 1999) was an American physicist and co-inventor of the laser with Charles Townes. His central insight, which Townes overlooked, was the use of two mirrors as the resonant cavity to take maser act ...
.
A laser differs from other sources of light in that it emits light which is
''coherent''.
Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as
laser cutting
Laser cutting is a technology that uses a laser to vaporize materials, resulting in a cut edge. While typically used for industrial manufacturing applications, it is now used by schools, small businesses, architecture, and hobbyists. Laser cutt ...
and
lithography
Lithography () is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by the German a ...
. Spatial coherence also allows a laser beam to stay narrow over great distances (
collimation
A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction pr ...
), enabling applications such as
laser pointer
A laser pointer or laser pen is a small handheld device with a power source (usually a battery) and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by ...
s and
lidar
Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
(light detection and ranging). Lasers can also have high
temporal coherence, which allows them to emit light with a very narrow
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
. Alternatively, temporal coherence can be used to produce
ultrashort pulse
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by ...
s of light with a broad spectrum but durations as short as a
femtosecond
A femtosecond is a unit of time in the International System of Units (SI) equal to 10 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31. ...
.
Lasers are used in
optical disc drive
In computing, an optical disc drive is a disc drive that uses laser light or electromagnetic waves within or near the visible light spectrum as part of the process of reading or writing data to or from optical discs. Some drives can only r ...
s,
laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a negatively-charged cylinder called a "drum" to d ...
s,
barcode scanner
A barcode reader is an optical scanner that can read printed barcodes, decode the data contained in the barcode to a computer. Like a flatbed scanner, it consists of a light source, a lens and a light sensor for translating optical impulses into e ...
s,
DNA sequencing instruments,
fiber-optic
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
and
free-space optical communication
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or ...
, semiconducting chip manufacturing (
photolithography
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
),
laser surgery
Laser surgery is a type of surgery that uses a laser (in contrast to using a scalpel) to cut tissue.
Examples include the use of a laser scalpel in otherwise conventional surgery, and soft-tissue laser surgery, in which the laser beam vapori ...
and skin treatments, cutting and
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
materials, military and
law enforcement
Law enforcement is the activity of some members of government who act in an organized manner to enforce the law by discovering, deterring, rehabilitating, or punishing people who violate the rules and norms governing that society. The term en ...
devices for marking targets and
measuring range and speed, and in
laser lighting display
A laser lighting display or laser light show involves the use of laser light to entertain an audience. A laser light show may consist only of projected laser beams set to music, or may accompany another form of entertainment, typically mus ...
s for entertainment. Semiconductor lasers in the blue to near-UV have also been used in place of
light-emitting diode
A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (cor ...
s (LEDs) to excite
fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
as a white light source. This permits a much smaller emitting area due to the much greater
radiance
In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiatio ...
of a laser and avoids the
droop suffered by LEDs; such devices are already used in some car
headlamp
A headlamp is a lamp attached to the front of a vehicle to illuminate the road ahead. Headlamps are also often called headlights, but in the most precise usage, ''headlamp'' is the term for the device itself and ''headlight'' is the term for ...
s.
Fundamentals
Lasers are distinguished from other light sources by their
coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is
diffraction-limited
The resolution of an optical imaging system a microscope, telescope, or camera can be limited by factors such as imperfections in the lenses or misalignment. However, there is a principal limit to the resolution of any optical system, due to t ...
. Laser beams can be focused to very tiny spots, achieving a very high
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used ...
, or they can have very low divergence in order to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a
polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the
coherence length
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ ...
) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and
phase
Phase or phases may refer to:
Science
*State of matter, or phase, one of the distinct forms in which matter can exist
*Phase (matter), a region of space throughout which all physical properties are essentially uniform
* Phase space, a mathematic ...
that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
in a vacuum. Most "single wavelength" lasers actually produce radiation in several ''modes'' with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, there are lasers that emit a broad spectrum of light or emit different wavelengths of light simultaneously. Some lasers are not single spatial mode and have light beams that
diverge more than is required by the
diffraction limit
The resolution of an optical imaging system a microscope, telescope, or camera can be limited by factors such as imperfections in the lenses or misalignment. However, there is a principal limit to the resolution of any optical system, due to th ...
. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Terminology
The first device using amplification by stimulated emission operated at microwave frequencies, and was named "
maser
A maser (, an acronym for microwave amplification by stimulated emission of radiation) is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, Ja ...
", an
acronym
An acronym is a word or name formed from the initial components of a longer name or phrase. Acronyms are usually formed from the initial letters of words, as in ''NATO'' (''North Atlantic Treaty Organization''), but sometimes use syllables, as ...
for "microwave amplification by stimulated emission of radiation". When similar optical devices were developed they were first known as "optical masers", until "microwave" was replaced by "light" in the acronym.
All such devices operating at frequencies higher than microwaves are called lasers (including ''infrared laser'', ''ultraviolet laser'', ''
X-ray laser
An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several tens of nanometers (nm) wavelength ...
'' and ''
gamma-ray laser''). All devices operating at
microwave
Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
or lower
radio frequencies
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the upper ...
are called masers.
A laser that produces light by itself is technically an optical oscillator rather than an
optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback fr ...
as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct.
With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as "laser amplifiers".
The
back-formed verb ''to lase'' is frequently used in the field, meaning "to give off coherent light," especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing". The words ''laser'' and ''maser'' are also used in cases where there is a coherent state unconnected with any manufactured device, as in ''
astrophysical maser
An astrophysical maser is a naturally occurring source of stimulated spectral line emission, typically in the microwave portion of the electromagnetic spectrum. This emission may arise in molecular clouds, comets, planetary atmospheres, stellar at ...
'' and ''
atom laser
An atom laser is a coherent state of propagating atoms. They are created out of a Bose–Einstein condensate of atoms that are output coupled using various techniques. Much like an optical laser, an atom laser is a coherent beam that behaves like ...
''.
Design
A laser consists of a
gain medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a ...
, a mechanism to energize it, and something to provide optical
feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
. The gain medium is a material with properties that allow it to
amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (increases in power). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that a coherent beam has been formed.
The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier.
For the gain medium to amplify light, it needs to be supplied with energy in a process called
pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a
flash lamp or by another laser.
The most common type of laser uses feedback from an
optical cavity An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and provi ...
—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the
output coupler
An output coupler (OC) is the component of an optical resonator that allows the extraction of a portion of the light from the laser's intracavity beam. An output coupler most often consists of a partially reflective mirror, allowing a certain por ...
, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or
curved
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that a ...
), the light coming out of the laser may spread out or form a narrow
beam
Beam may refer to:
Streams of particles or energy
*Light beam, or beam of light, a directional projection of light energy
**Laser beam
*Particle beam, a stream of charged or neutral particles
**Charged particle beam, a spatially localized grou ...
. In analogy to
electronic oscillator
An electronic oscillator is an electronic circuit that produces a periodic, oscillation, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillation, Oscillators convert direct current (DC) from a power supp ...
s, this device is sometimes called a ''laser oscillator''.
Most practical lasers contain additional elements that affect properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
Laser physics
Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s and how they interact with
electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
s are important in our understanding of
chemistry
Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
and
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
.
Stimulated emission
In the
classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the
nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
*Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucle ...
of an
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, and ...
. However, quantum mechanical effects force electrons to take on discrete positions in
orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
An electron in an atom can absorb energy from light (
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s) or heat (
phonon
In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s) only if there is a transition between energy levels that matches the energy carried by the photon or phonon. For light, this means that any given transition will only
absorb one particular
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is
excited from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE . Conserving energy, the electron transitions to a lower energy level which is not occupied, with transitions to different levels having different time constants. This process is called "
spontaneous emission
Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of ...
". Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg
uncertainty principle
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
. The emitted photon has random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of
fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
and
thermal emission
Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
Gain medium and cavity
The gain medium is put into an
excited state
In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
by an external source of energy. In most lasers this medium consists of a population of atoms which have been excited into such a state by means of an outside light source, or an electrical field which supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any
state
State may refer to:
Arts, entertainment, and media Literature
* ''State Magazine'', a monthly magazine published by the U.S. Department of State
* ''The State'' (newspaper), a daily newspaper in Columbia, South Carolina, United States
* ''Our S ...
: gas, liquid, solid, or
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
. The gain medium absorbs pump energy, which raises some electrons into higher-energy ("
excited")
quantum state
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
s. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state,
population inversion
In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an
optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback fr ...
. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.
For lasing media with extremely high gain, so-called
superluminescence Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers.
Origins
...
, it is possible for light to be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see for example
nitrogen laser
A nitrogen laser is a gas laser operating in the ultraviolet rangeC. S. Willett, ''Introduction to Gas Lasers: Population Inversion Mechanisms'' (Pergamon, New York,1974). (typically 337.1 nm) using molecular nitrogen as its gain medium, pum ...
),
the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather is a high gain optical amplifier which amplifies its own spontaneous emission. The same mechanism describes so-called
astrophysical maser
An astrophysical maser is a naturally occurring source of stimulated spectral line emission, typically in the microwave portion of the electromagnetic spectrum. This emission may arise in molecular clouds, comets, planetary atmospheres, stellar at ...
s/lasers.
The optical
resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a
maser
A maser (, an acronym for microwave amplification by stimulated emission of radiation) is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, Ja ...
.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise
exponentially
Exponential may refer to any of several mathematical topics related to exponentiation, including:
*Exponential function, also:
**Matrix exponential, the matrix analogue to the above
* Exponential decay, decrease at a rate proportional to value
*Exp ...
. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the ''
lasing threshold The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above t ...
''. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a
spatial mode
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light emitted
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the
phase
Phase or phases may refer to:
Science
*State of matter, or phase, one of the distinct forms in which matter can exist
*Phase (matter), a region of space throughout which all physical properties are essentially uniform
* Phase space, a mathematic ...
of emitted light is 90 degrees in lead of the stimulating light.
This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental
laser linewidth of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate
injection seeder Injection seeders are devices that direct the output of small "seed" lasers into the cavity of a much larger laser to stabilize the latter's output. Most seed lasers are stable, single-frequency lasers that emit within the linewidth of the large ...
to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
In 1963,
Roy J. Glauber
Roy Jay Glauber (September 1, 1925 – December 26, 2018) was an American theoretical physicist. He was the Mallinckrodt Professor of Physics at Harvard University and Adjunct Professor of Optical Sciences at the University of Arizona. Born in New ...
showed that coherent states are formed from combinations of
photon number
In quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an impo ...
states, for which he was awarded the
Nobel Prize in physics
)
, image = Nobel Prize.png
, alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
.
A coherent beam of light is formed by single-frequency quantum photon states distributed according to a
Poisson distribution
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known co ...
. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics.
Many lasers produce a beam that can be approximated as a
Gaussian beam
In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This ...
; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the
transverse mode
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
s often approximated using
Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermi ...
–
Gaussian
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below.
There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
or
Laguerre
Edmond Nicolas Laguerre (9 April 1834, Bar-le-Duc – 14 August 1886, Bar-le-Duc) was a French mathematician and a member of the Académie des sciences (1885). His main works were in the areas of geometry and complex analysis. He also investigate ...
-Gaussian functions. Some high power lasers use a flat-topped profile known as a "
tophat beam In optics, a tophat (or top-hat) beam such as a laser beam or electron beam has a near-uniform fluence (energy density) within a circular disk. It is typically formed by diffractive optical elements from a Gaussian beam. Tophat beams are often used ...
". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as
Bessel beams and
optical vortex
An optical vortex (also known as a photonic quantum vortex, screw dislocation or phase singularity) is a zero of an optical field; a point of zero Intensity (physics), intensity. The term is also used to describe a beam of light that has such a ze ...
es.
Near the "waist" (or
focal region) of a laser beam, it is highly ''
collimated
A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction pr ...
'': the wavefronts are planar, normal to the direction of propagation, with no
beam divergence
In electromagnetics, especially in optics, beam divergence is an angular measure of the increase in beam diameter or radius with distance from the optical aperture or antenna aperture from which the beam emerges. The term is relevant only in the ...
at that point. However, due to
diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
, that can only remain true well within the
Rayleigh range
In optics and especially laser science, the Rayleigh length or Rayleigh range, z_\mathrm, is the distance along the propagation direction of a light beam, beam from the beam waist, waist to the place where the area of the Cross_section_(geometry ...
. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by
diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
theory. Thus, the "pencil beam" directly generated by a common
helium–neon laser
A helium–neon laser or He-Ne laser, is a type of gas laser whose high energetic medium gain medium consists of a mixture of 10:1 ratio of helium and neon at a total pressure of about 1 torr inside of a small electrical discharge. The best ...
would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand, the light from a
semiconductor laser
The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a
lens
A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
system, as is always included, for instance, in a
laser pointer
A laser pointer or laser pen is a small handheld device with a power source (usually a battery) and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by ...
whose light originates from a
laser diode
file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a di ...
. That is possible due to the light being of a single spatial mode. This unique property of laser light,
spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
A
laser beam profiler
A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuou ...
is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection
Diffuse reflection is the reflection (physics), reflection of light or other radiation, waves or particles from a surface such that a ray (optics), ray incident on the surface is scattering, scattered at many angles rather than at just one angle ...
of a laser beam from a matte surface produces a
speckle pattern
Speckle, speckle pattern, or speckle noise is a granular noise texture degrading the quality as a consequence of interference among wavefronts in coherent imaging systems, such as radar, synthetic aperture radar (SAR), medical ultrasound and optic ...
with interesting properties.
Quantum vs. classical emission processes
The mechanism of producing radiation in a laser relies on
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
, who derived the relationship between the
A coefficient describing spontaneous emission and the
B coefficient which applies to absorption and stimulated emission. However, in the case of the
free electron laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecula ...
, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
.
Continuous and pulsed modes of operation
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the
cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall in that category.
Continuous-wave operation
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as ''
continuous-wave
A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particl ...
'' (''CW'') laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will, in fact, produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the
frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over any longer time periods, with the very high-frequency power variations having little or no impact in the intended application. (However, the term is not applied to
mode-locked lasers, where the ''intention'' is to create very short pulses at the rate of the round-trip time.)
For continuous-wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation
Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In
laser ablation
Laser ablation or photoablation (also called laser blasting) is the process of removing material from a solid (or occasionally liquid) surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser ...
, for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain
nonlinear optical
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typic ...
effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as
Q-switching
Q-switching, sometimes known as giant pulse formation or Q-spoiling, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high (gigawatt) peak power, much hi ...
.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some ''dye lasers'' and ''vibronic solid-state lasers'' produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few
femtoseconds
A femtosecond is a unit of time in the International System of Units (SI) equal to 10 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31. ...
(10
−15 s).
Q-switching
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
Mode locking
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of
picosecond
A picosecond (abbreviated as ps) is a unit of time in the International System of Units (SI) equal to 10−12 or (one trillionth) of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000  ...
s down to less than 10
femtoseconds
A femtosecond is a unit of time in the International System of Units (SI) equal to 10 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31. ...
. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the
Fourier limit (also known as energy–time
uncertainty
Uncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or ...
), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is
titanium
Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
-doped, artificially grown
sapphire
Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sapphir ...
(
Ti:sapphire), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics,
femtosecond chemistry and
ultrafast science), for maximizing the effect of
nonlinearity
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
in optical materials (e.g. in
second-harmonic generation
Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of ...
,
parametric down-conversion
Spontaneous parametric down-conversion (also known as SPDC, parametric fluorescence or parametric scattering) is a nonlinear instant optical process that converts one photon of higher energy (namely, a pump photon), into a pair of photons (namely, ...
,
optical parametric oscillator
An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by means ...
s and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent, that is, the pulses (and not just their
envelopes
An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter or card.
Traditional envelopes are made from sheets of paper cut to one of three shapes: a rhombus, a sh ...
) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
Pulsed pumping
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large
capacitors
A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals.
The effect of a ...
which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
History
Foundations
In 1917,
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
established the theoretical foundations for the laser and the
maser
A maser (, an acronym for microwave amplification by stimulated emission of radiation) is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, Ja ...
in the paper ''Zur Quantentheorie der Strahlung'' (On the Quantum Theory of Radiation) via a re-derivation of
Max Planck
Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918.
Planck made many substantial contributions to theoretical p ...
's law of radiation, conceptually based upon probability coefficients (
Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation.
In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption.
[Steen, W.M. "Laser Materials Processing", 2nd Ed. 1998.] In 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify "short" waves. In 1947, Willis E. Lamb and R.C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission.
In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter.
Maser
In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at Ottawa, Ontario, Canada. After this presentation, RCA asked Weber to give a seminar on this idea, and
Charles Hard Townes
Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American physicist. Townes worked on the theory and application of the maser, for which he obtained the fundamental patent, and other work in quantum electronics associated wi ...
asked him for a copy of the paper.
In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying
microwave
Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Mikhailovich Prokhorov, Aleksandr Prokhorov were independently working on the Quantum harmonic oscillator, quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
s between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a
population inversion
In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicists—among them Niels Bohr, John von Neumann, and Llewellyn Thomas—argued the maser violated Heisenberg's
uncertainty principle
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort. In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle".
Laser
In April 1957, Japanese engineer Jun-ichi Nishizawa proposed the concept of a "semiconductor laser, semiconductor optical maser" in a patent application.
That same year,
Charles Hard Townes
Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American physicist. Townes worked on the theory and application of the maser, for which he obtained the fundamental patent, and other work in quantum electronics associated wi ...
and
Arthur Leonard Schawlow
Arthur Leonard Schawlow (May 5, 1921 – April 28, 1999) was an American physicist and co-inventor of the laser with Charles Townes. His central insight, which Townes overlooked, was the use of two mirrors as the resonant cavity to take maser act ...
, then at Bell Labs, began a serious study of infrared "optical masers". As ideas developed, they abandoned infrared radiation to instead concentrate on visible light. In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the ''Physical Review'', which was published in 1958.
Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation Emission (electromagnetic radiation), emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a "laser", including using an open
resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
(later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Meanwhile, Schawlow and Townes had decided on an open-resonator laser design – apparently unaware of Prokhorov's publications and Gould's unpublished laser work.
At a conference in 1959, Gordon Gould first published the acronym "LASER" in the paper ''The LASER, Light Amplification by Stimulated Emission of Radiation''.
Gould's intention was that different "-ASER" acronyms should be used for different parts of the spectrum: "XASER" for x-rays, "UVASER" for ultraviolet, etc. "LASER" ended up becoming the generic term for non-microwave devices, although "RASER" was briefly popular for denoting radio-frequency-emitting devices.
Gould's notes included possible applications for a laser, such as Spectroscopy, spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The United States Patent and Trademark Office, U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.
On May 16, 1960, Theodore Maiman, Theodore H. Maiman operated the first functioning laser at
Hughes Research Laboratories
Hughes may refer to:
People
* Hughes (surname)
* Hughes (given name)
Places Antarctica
* Hughes Range (Antarctica), Ross Dependency
* Mount Hughes, Oates Land
* Hughes Basin, Oates Land
* Hughes Bay, Graham Land
* Hughes Bluff, Victoria Lan ...
, Malibu, California, ahead of several research teams, including those of Charles H. Townes, Townes, at Columbia University, Arthur L. Schawlow, Arthur Schawlow, at Bell Labs, and Gould, at the TRG (Technical Research Group) company. Maiman's functional laser used a flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the Iranian physicist Ali Javan, and William R. Bennett, Jr., William R. Bennett, and Donald R. Herriott, Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein World Award of Science in 1993. Basov and Javan proposed the semiconductor
laser diode
file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a di ...
concept. In 1962, Robert N. Hall demonstrated the first ''laser diode'' device, which was made of gallium arsenide and emitted in the near-infrared band of the spectrum at 850 nm. Later that year, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Ivanovich Alferov, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Recent innovations
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
* new wavelength bands
* maximum average output power
* maximum peak pulse energy
* maximum peak pulse power (physics), power
* minimum output pulse duration
* minimum linewidth
* maximum power efficiency
* minimum cost
and this research continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
In 2017, researchers at Delft University of Technology, TU Delft demonstrated an Josephson effect#The AC Josephson effect, AC Josephson junction microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has potential for applications in quantum computing. In 2017, researchers at Technical University of Munich, TU Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
In 2017, researchers from the Physikalisch-Technische Bundesanstalt, Physikalisch-Technische Bundesanstalt (PTB), together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 millihertz.
Types and operating principles
Gas lasers
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.
Gas lasers using many different gases have been built and used for many purposes. The
helium–neon laser
A helium–neon laser or He-Ne laser, is a type of gas laser whose high energetic medium gain medium consists of a mixture of 10:1 ratio of helium and neon at a total pressure of about 1 torr inside of a small electrical discharge. The best ...
(HeNe) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial Carbon dioxide laser, carbon dioxide (CO
2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO
2 laser is unusually high: over 30%. Ion laser, Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen TEA laser, transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg) 224 nm and neon-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers), making them candidates for use in
fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
suppressed Raman spectroscopy.
Lasing without inversion, Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled.
Chemical lasers
Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the hydrogen fluoride laser (2700–2900 nm) and the deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
Excimer lasers
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited state, excited electronic state. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all :Noble gas compounds, noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applications including semiconductor
photolithography
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
and LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm).
The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F
2 is a stable compound.
Solid-state lasers
Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The
population inversion
In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
is actually maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser. The usage of the term "solid-state" in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically ''not'' referred to as solid-state lasers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate (Neodymium-doped yttrium orthovanadate, Nd:YVO
4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers. These lasers are also commonly Second-harmonic generation, frequency doubled, Third harmonic generation, tripled or quadrupled to produce 532 nm (green, visible), 355 nm and 266 nm (Ultraviolet, UV) beams, respectively. Frequency-doubled diode-pumped solid-state (DPSS) lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF
2, typically operating around 1020–1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped
sapphire
Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sapphir ...
(
Ti:sapphire) produces a highly tunable laser, tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing
ultrashort pulse
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by ...
s of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (d''n''/d''T'') can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin disk lasers overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.
Fiber lasers
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living Color center (crystallography), color centers.
Photonic crystal lasers
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the Density of states, density of optical states (DOS) structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals.
Semiconductor lasers
Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial
laser diode
file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a di ...
s emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in
laser pointer
A laser pointer or laser pen is a small handheld device with a power source (usually a battery) and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by ...
s,
laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a negatively-charged cylinder called a "drum" to d ...
s and CD/DVD players. Laser diodes are also frequently used to optically laser pumping, pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.
Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy ''sub-bands'' of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip level applications.
These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing.
Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Dye lasers
Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few
femtosecond
A femtosecond is a unit of time in the International System of Units (SI) equal to 10 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31. ...
s). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media.
Free-electron lasers
Free-electron lasers, or FELs, generate coherent, high power radiation that is widely tunable, currently ranging in wavelength from microwaves through terahertz radiation and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term ''free-electron''.
Exotic media
The pursuit of a high-quantum-energy laser using transitions between Nuclear isomer, isomeric states of an atomic nucleus has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles. This research has been international in scope, but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a breakthrough is near, an operational
gamma-ray laser is yet to be realized.
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser.
Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.
Space-based
X-ray laser
An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several tens of nanometers (nm) wavelength ...
s pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
Living cells have been used to produce laser light. The cells were genetically engineered to produce green fluorescent protein, which served as the laser's gain medium. The cells were then placed between two 20 micrometer wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intense, directed green laser light.
Natural lasers
Like
astrophysical maser
An astrophysical maser is a naturally occurring source of stimulated spectral line emission, typically in the microwave portion of the electromagnetic spectrum. This emission may arise in molecular clouds, comets, planetary atmospheres, stellar at ...
s, irradiated planetary or stellar gases may amplify light producing a natural laser. Mars, Venus and MWC 349 exhibit this phenomenon.
Uses
When lasers were invented in 1960, they were called "a solution looking for a problem". Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry,
law enforcement
Law enforcement is the activity of some members of government who act in an organized manner to enforce the law by discovering, deterring, rehabilitating, or punishing people who violate the rules and norms governing that society. The term en ...
, entertainment, and the Laser applications#Military, military. Fiber-optic communication using lasers is a key technology in modern communications, allowing services such as the Internet.
The first widely noticeable use of lasers was the supermarket
barcode scanner
A barcode reader is an optical scanner that can read printed barcodes, decode the data contained in the barcode to a computer. Like a flatbed scanner, it consists of a light source, a lens and a light sensor for translating optical impulses into e ...
, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by
laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a negatively-charged cylinder called a "drum" to d ...
s.
Some other uses are:
* Communications: besides fiber-optic communication, lasers are used for
free-space optical communication
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or ...
, including laser communication in space.
* Medicine: see #In medicine, below.
* Industry: Laser cutting, cutting including Laser converting, converting thin materials,
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
, material heat treatment, laser marking, marking parts (Laser engraving, engraving and Laser bonding, bonding), additive manufacturing or 3D printing processes such as selective laser sintering and selective laser melting, non-contact measurement of parts and 3D scanning, and laser cleaning.
* Military: marking targets, guiding munitions, Airborne Laser, missile defense, DIRCM, electro-optical countermeasures (EOCM),
lidar
Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
, blinding troops, Laser sight (firearms), firearms sight. See #As weapons, below
* Law enforcement agency, Law enforcement: LIDAR traffic enforcement. Lasers are used for latent fingerprint detection in the forensic identification field
* Research: spectroscopy,
laser ablation
Laser ablation or photoablation (also called laser blasting) is the process of removing material from a solid (or occasionally liquid) surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser ...
, laser annealing (metallurgy), annealing, laser scattering, laser interferometry,
lidar
Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
, laser capture microdissection, fluorescence microscopy, metrology, laser cooling.
* Commercial products:
laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a negatively-charged cylinder called a "drum" to d ...
s,
barcode scanner
A barcode reader is an optical scanner that can read printed barcodes, decode the data contained in the barcode to a computer. Like a flatbed scanner, it consists of a light source, a lens and a light sensor for translating optical impulses into e ...
s, thermometers,
laser pointer
A laser pointer or laser pen is a small handheld device with a power source (usually a battery) and a laser diode emitting a very narrow coherent low-powered laser beam of visible light, intended to be used to highlight something of interest by ...
s, holograms, bubblegrams.
* Entertainment: optical discs,
laser lighting display
A laser lighting display or laser light show involves the use of laser light to entertain an audience. A laser light show may consist only of projected laser beams set to music, or may accompany another form of entertainment, typically mus ...
s, laser turntables
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion. In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.
In medicine
Lasers have many uses in medicine, including
laser surgery
Laser surgery is a type of surgery that uses a laser (in contrast to using a scalpel) to cut tissue.
Examples include the use of a laser scalpel in otherwise conventional surgery, and soft-tissue laser surgery, in which the laser beam vapori ...
(particularly Laser eye surgery, eye surgery), laser healing (photobiomodulation therapy), kidney stone treatment, Scanning laser ophthalmoscopy, ophthalmoscopy, and cosmetic skin treatments such as acne treatment, cellulite and striae reduction, and Laser hair removal, hair removal.
Lasers are used to treat cancer by shrinking or destroying Neoplasm, tumors or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical cancer, cervical, penile cancer, penile, vaginal cancer, vaginal, vulvar cancer, vulvar, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser ablation, Laser-induced interstitial thermotherapy (LITT), or interstitial laser Laser coagulation, photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training and thus it will likely be more expensive than other treatments.
As weapons
A laser weapon is a laser that is used as a directed-energy weapon.
Hobbies
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb (see #Safety, Safety), although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.
Hobbyists have also used surplus lasers taken from retired military applications and modified them for holography. Pulsed ruby and YAG lasers work well for this application.
Examples by power
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the ''peak'' power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.
Examples of pulsed systems with high peak power:
* 700 terawatt, TW (700×10
12 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber
* 10 petawatt, PW (10×10
15 W) – world's most powerful laser as of 2019, located at the Extreme Light Infrastructure, ELI-NP facility in Măgurele, Romania.
Safety
Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one Global Gillette, Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the human eye, eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
* Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
* Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
* Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
* Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure.
* Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Infrared lasers with wavelengths longer than about 1.4 micrometers are often referred to as "eye-safe", because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label "eye-safe" can be misleading, however, as it applies only to relatively low power continuous wave beams; a high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may actually be more sensitive to laser damage than biological eyes.
See also
* Anti-laser
* Coherent perfect absorber
* Homogeneous broadening
* Laser linewidth
* List of laser articles
* List of light sources
* Nanolaser
* Sound amplification by stimulated emission of radiation
* Spaser
* Fabry–Pérot interferometer
References
Further reading
Books
* Bertolotti, Mario (1999, trans. 2004). ''The History of the Laser''. Institute of Physics. .
* Bromberg, Joan Lisa (1991). ''The Laser in America, 1950–1970''. MIT Press. .
* Csele, Mark (2004). ''Fundamentals of Light Sources and Lasers''. Wiley. .
* Koechner, Walter (1992). ''Solid-State Laser Engineering''. 3rd ed. Springer-Verlag. .
* Siegman, Anthony E. (1986). ''Lasers''. University Science Books. .
* William T. Silfvast, Silfvast, William T. (1996). ''Laser Fundamentals''. Cambridge University Press. .
* Svelto, Orazio (1998). ''Principles of Lasers''. 4th ed. Trans. David Hanna. Springer. .
*
* Wilson, J. & Hawkes, J.F.B. (1987). ''Lasers: Principles and Applications''. Prentice Hall International Series in Optoelectronics, Prentice Hall. .
* Yariv, Amnon (1989). ''Quantum Electronics''. 3rd ed. Wiley. .
Periodicals
* ''Applied Physics B: Lasers and Optics'' ()
* ''IEEE Journal of Lightwave Technology'' ()
* ''IEEE Journal of Quantum Electronics'' ()
* ''IEEE Journal of Selected Topics in Quantum Electronics'' ()
* ''IEEE Photonics Technology Letters'' ()
* ''Journal of the Optical Society of America B: Optical Physics'' ()
* ''Laser Focus World'' ()
* ''Optics Letters'' ()
* ''Photonics Spectra'' ()
External links
Encyclopedia of laser physics and technologyby Dr. Rüdiger Paschotta
by Samuel M. Goldwasser
by Professor Mark Csele
– The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter (''New Scientist'', April 9, 2008)
*
an online course by Prof. F. Balembois and Dr. S. Forget. ''Instrumentation for Optics'', 2008, (accessed January 17, 2014)
* [http://www.laserfest.org/ Website on Lasers 50th anniversary by APS, OSA, SPIE]
Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs history of the invention, with audio interview clips.
Free software for Simulation of random laser dynamicsVideo Demonstrations in Lasers and OpticsProduced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
MIT Video Lecture: Understanding Lasers and FiberopticsVirtual Museum of Laser History, from the touring exhibit by SPIEwebsite with animations, applications and research about laser and other quantum based phenomenaUniversite Paris Sud
{{Authority control
1960 introductions
Lasers,
American inventions
Articles containing video clips
Photonics
Quantum optics
Russian inventions
Soviet inventions