Lie Supergroup
   HOME

TheInfoList



OR:

The concept of supergroup is a
generalization A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteri ...
of that of
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
. In other words, every supergroup carries a natural group structure, but there may be more than one way to structure a given group as a supergroup. A supergroup is like a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
in that there is a well defined notion of
smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
defined on them. However the functions may have even and odd parts. Moreover, a supergroup has a super Lie algebra which plays a role similar to that of a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
for Lie groups in that they determine most of the
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
and which is the starting point for classification.


Details

More formally, a Lie supergroup is a
supermanifold In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. Informal definition An informal definition is com ...
''G'' together with a multiplication morphism \mu :G \times G\rightarrow G, an inversion morphism i : G \rightarrow G and a unit morphism e: 1 \rightarrow G which makes ''G'' a
group object In category theory, a branch of mathematics, group objects are certain generalizations of group (mathematics), groups that are built on more complicated structures than Set (mathematics), sets. A typical example of a group object is a topological gr ...
in the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
of supermanifolds. This means that, formulated as commutative diagrams, the usual associativity and inversion axioms of a group continue to hold. Since every manifold is a supermanifold, a Lie supergroup generalises the notion of a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
. There are many possible supergroups. The ones of most interest in theoretical physics are the ones which extend the
Poincaré group The Poincaré group, named after Henri Poincaré (1905), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our unde ...
or the
conformal group In mathematics, the conformal group of an inner product space is the group (mathematics), group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometr ...
. Of particular interest are the orthosymplectic groups Osp(''M'', ''N'')(''M'', ''N'') is pronounced "''M''
vertical bar The vertical bar, , is a glyph with various uses in mathematics, computing, and typography. It has many names, often related to particular meanings: Sheffer stroke (in logic), pipe, bar, or (literally, the word "or"), vbar, and others. Usage ...
''N''." Bosonic part of Osp(''M'', ''N'') consists of the direct sum of Sp(''N'') and SO(''M'') Lie groups. See
superspace Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions ''x'', ''y'', ''z'', ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann num ...
for a general definition. (cf. Larus Thorlacius, Thordur Jonsson (eds.), ''M-Theory and Quantum Geometry'', Springer, 2012, p. 263).
and the superunitary groups SU(''M'', ''N''). An equivalent algebraic approach starts from the observation that a supermanifold is determined by its ring of supercommutative smooth functions, and that a morphism of supermanifolds corresponds one to one with an algebra homomorphism between their functions in the opposite direction, i.e. that the category of supermanifolds is opposite to the category of algebras of smooth graded commutative functions. Reversing all the arrows in the commutative diagrams that define a Lie supergroup then shows that functions over the supergroup have the structure of a Z2-graded
Hopf algebra In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a ( unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover ...
. Likewise the representations of this Hopf algebra turn out to be Z2-graded comodules. This Hopf algebra gives the global properties of the supergroup. There is another related Hopf algebra which is the dual of the previous Hopf algebra. It can be identified with the Hopf algebra of graded differential operators at the origin. It only gives the local properties of the symmetries i.e., it only gives information about infinitesimal supersymmetry transformations. The representations of this Hopf algebra are modules. Like in the non-graded case, this Hopf algebra can be described purely algebraically as the
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representa ...
of the Lie superalgebra. In a similar way one can define an affine algebraic supergroup as a group object in the category of superalgebraic affine varieties. An affine algebraic supergroup has a similar one to one relation to its
Hopf algebra In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a ( unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover ...
of superpolynomials. Using the language of schemes, which combines the geometric and algebraic point of view, algebraic supergroup schemes can be defined including super
Abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular f ...
.


Examples

The super-Poincaré group is the group of isometries of
superspace Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions ''x'', ''y'', ''z'', ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann num ...
(specifically, Minkowski superspace with \mathcal
supercharge In theoretical physics, a supercharge is a generator of supersymmetry transformations. It is an example of the general notion of a charge (physics), charge in physics. Supercharge, denoted by the symbol Q, is an operator which transforms bosons in ...
s, where often \mathcal is taken to be 1). It is most often treated at the algebra level, and is generated by the super-Poincaré algebra. The super-conformal group is the group of conformal symmetries of superspace, generated by the super-conformal algebra.


Notes


References


supergroup
in ''
nLab The ''n''Lab is a wiki for research-level notes, expositions and collaborative work, including original research, in mathematics, physics, and philosophy, with a focus on methods from type theory, category theory, and homotopy theory. The ''n''Lab ...
'' {{DEFAULTSORT:Supergroup (Physics) Supersymmetry Hopf algebras Super linear algebra