HOME

TheInfoList



OR:

Length is a measure of
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
. In the
International System of Quantities The International System of Quantities (ISQ) consists of the quantities used in physics and in modern science in general, starting with basic quantities such as length and mass, and the relationships between those quantities. This system underlie ...
, length is a
quantity Quantity or amount is a property that can exist as a Counting, multitude or Magnitude (mathematics), magnitude, which illustrate discontinuity (mathematics), discontinuity and continuum (theory), continuity. Quantities can be compared in terms o ...
with
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
distance. In most
systems of measurement A system of measurement is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Systems of measurement i ...
a base unit for length is chosen, from which all other units are derived. In the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
(SI) system the base unit for length is the
metre The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
. Length is commonly understood to mean the most extended
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
of a fixed object. However, this is not always the case and may depend on the position the object is in. Various terms for the length of a fixed object are used, and these include
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is abou ...
, which is vertical length or vertical extent, and width, breadth or depth. Height is used when there is a base from which vertical measurements can be taken. Width or breadth usually refer to a shorter dimension when length is the longest one. Depth is used for the third dimension of a three dimensional object. Length is the measure of one spatial dimension, whereas
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
is a measure of two dimensions (length squared) and
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
is a measure of three dimensions (length cubed).


History

Measurement has been important ever since humans settled from nomadic lifestyles and started using building materials, occupying land and trading with neighbours. As trade between different places increased, the need for standard units of length increased. And later, as society has become more technologically oriented, much higher accuracy of measurement is required in an increasingly diverse set of fields, from micro-electronics to interplanetary ranging. Under
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
, length can no longer be thought of as being constant in all
reference frame In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale are specified by a set of reference point ...
s. Thus a
ruler A ruler, sometimes called a rule, line gauge, or scale, is a device used in geometry and technical drawing, as well as the engineering and construction industries, to measure distances or draw straight lines. Variants Rulers have long ...
that is one metre long in one frame of reference will not be one metre long in a reference frame that is moving relative to the first frame. This means the length of an object varies depending on the speed of the observer.


Use in mathematics


Euclidean geometry

In Euclidean geometry, length is measured along
straight line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are One-dimensional space, one-dimensional objects, though they may exist in Two-dimensional Euclidean space, two, Three-dimensional space, three, ...
s unless otherwise specified and refers to segments on them.
Pythagoras's theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
relating the length of the sides of a
right triangle A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
is one of many applications in Euclidean geometry. Length may also be measured along other types of curves and is referred to as arclength. In a
triangle A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, an ...
, the length of an
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
, a line segment drawn from a vertex
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to the side not passing through the vertex (referred to as a base of the triangle), is called the height of the triangle. The
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
of a
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
is defined to be length × width of the rectangle. If a long thin rectangle is stood up on its short side then its area could also be described as its height × width. The
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
of a solid rectangular box (such as a
plank of wood A plank is timber that is flat, elongated, and rectangular with parallel faces that are higher and longer than wide. Used primarily in carpentry, planks are critical in the construction of ships, houses, bridges, and many other structures. Plan ...
) is often described as length × height × depth. The
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pract ...
of a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
is the sum of the lengths of its sides. The
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out to ...
of a circular
disk Disk or disc may refer to: * Disk (mathematics), a geometric shape * Disk storage Music * Disc (band), an American experimental music band * ''Disk'' (album), a 1995 EP by Moby Other uses * Disk (functional analysis), a subset of a vector sp ...
is the length of the
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment *Boundaries (2016 film), ''Boundaries'' (2016 film), a 2016 Canadian film *Boundaries (2018 film), ''Boundaries'' (2018 film), a 2018 American-Canadian road trip ...
(a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
) of that disk.


Other geometries

In other geometries, length may be measured along possibly curved paths, called
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s. The
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to poin ...
used in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
is an example of such a geometry. In
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
, length is measured along the
great circles In mathematics, a great circle or orthodrome is the circle, circular Intersection (geometry), intersection of a sphere and a Plane (geometry), plane incidence (geometry), passing through the sphere's centre (geometry), center point. Any Circula ...
on the sphere and the distance between two points on the sphere is the shorter of the two lengths on the great circle, which is determined by the plane through the two points and the center of the sphere.


Graph theory

In an
unweighted graph This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B ...
, the length of a
cycle Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in soc ...
,
path A path is a route for physical travel – see Trail. Path or PATH may also refer to: Physical paths of different types * Bicycle path * Bridle path, used by people on horseback * Course (navigation), the intended path of a vehicle * Desire p ...
, or
walk Walking (also known as ambulation) is one of the main gaits of terrestrial locomotion among legged animals. Walking is typically slower than running and other gaits. Walking is defined by an 'inverted pendulum' gait in which the body vaults ov ...
is the number of
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
s it uses. In a
weighted graph This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B ...
, it may instead be the sum of the weights of the edges that it uses. Length is used to define the
shortest path In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between tw ...
,
girth Girth may refer to: ;Mathematics * Girth (functional analysis), the length of the shortest centrally symmetric simple closed curve on the unit sphere of a Banach space * Girth (geometry), the perimeter of a parallel projection of a shape * Girth ...
(shortest cycle length), and
longest path In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called ''simple'' if it does not have any repeated vertices; the length of a path may ...
between two vertices in a graph.


Measure theory

In measure theory, length is most often generalized to general sets of \mathbb^n via the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
. In the one-dimensional case, the Lebesgue outer measure of a set is defined in terms of the lengths of open intervals. Concretely, the length of an
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
is first defined as :\ell(\)=b-a. so that the Lebesgue outer measure \mu^*(E) of a general set E may then be defined as :\mu^*(E)=\inf\left\.


Units

In the physical sciences and engineering, when one speaks of , the word is synonymous with
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
. There are several
units Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (alb ...
that are used to
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
length. Historically, units of length may have been derived from the lengths of human body parts, the distance traveled in a number of paces, the distance between landmarks or places on the Earth, or arbitrarily on the length of some common object. In the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
(SI), the base unit of length is the
metre The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
(symbol, m) and is now defined in terms of the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
(about 300 million metres per
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...
). The
millimetre 330px, Different lengths as in respect to the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 meter to 1 millimeter. The millimetre (American and British English spelling differences#-re, -er, ...
(mm),
centimetre 330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter. A centimetre (international spelling) or centimeter (American spellin ...
(cm) and the
kilometre The kilometre ( SI symbol: km; or ), spelt kilometer in American English, is a unit of length in the International System of Units (SI), equal to one thousand metres (kilo- being the SI prefix for ). It is now the measurement unit used for ex ...
(km), derived from the metre, are also commonly used units. In
U.S. customary units United States customary units form a system of measurement units commonly used in the United States and U.S. territories since being standardized and adopted in 1832. The United States customary system (USCS or USC) developed from English units ...
, English or
Imperial system of units The imperial system of units, imperial system or imperial units (also known as British Imperial or Exchequer Standards of 1826) is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed thro ...
, commonly used units of length are the
inch Measuring tape with inches The inch (symbol: in or ″) is a unit of length in the British imperial and the United States customary systems of measurement. It is equal to yard or of a foot. Derived from the Roman uncia ("twelfth") ...
(in), the
foot The foot ( : feet) is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made ...
(ft), the
yard The yard (symbol: yd) is an English unit of length in both the British imperial and US customary systems of measurement equalling 3 feet or 36 inches. Since 1959 it has been by international agreement standardized as exactly 0.914 ...
(yd), and the
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a British imperial unit and United States customary unit of distance; both are based on the older English unit of length equal to 5,280 English ...
(mi). A unit of length used in
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation, ...
is the
nautical mile A nautical mile is a unit of length used in air, marine, and space navigation, and for the definition of territorial waters. Historically, it was defined as the meridian arc length corresponding to one minute ( of a degree) of latitude. Today ...
(nmi). Units used to denote distances in the vastness of space, as in
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
, are much longer than those typically used on Earth (metre or centimetre) and include the
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits t ...
(au), the
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
, and the
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
(pc). Units used to denote sub-atomic distances, as in
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
, are much smaller than the centimetre. Examples include the
fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian (later naturalized American) physicist and the creator of the world's first nuclear reactor, the Chicago Pile-1. He has been called the "architect of the nuclear age" and ...
.


See also

*
Arc length ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
*
Conversion of units Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors which change the measured quantity value without changing its effects. Overview The process ...
* Humorous units of length *
Length measurement Length measurement, distance measurement, or range measurement (ranging) refers to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the int ...
*
Metric system The metric system is a system of measurement that succeeded the Decimal, decimalised system based on the metre that had been introduced in French Revolution, France in the 1790s. The historical development of these systems culminated in the d ...
*
Metric units Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. The most widely used examples are the units of the International System of Units (SI). By extension they include units of el ...
*
Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. __TOC__ Overview Detailed list To help compare different orders of magnitude, the following list describes various lengths between 1.6 \times 10^ metres and 10^ ...
*
Reciprocal length Reciprocal length or inverse length is a quantity or measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre (symbol: m− ...


References

{{Authority control Physical quantities SI base quantities