Large-conductance Calcium-activated Potassium Channels
   HOME

TheInfoList



OR:

BK channels (big potassium), are large conductance calcium-activated potassium channels, also known as Maxi-K, slo1, or Kca1.1. BK channels are
voltage-gated potassium channel Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized ce ...
s that conduct large amounts of potassium ions (K+) across the cell membrane, hence their name, ''big potassium''. These channels can be activated (opened) by either electrical means, or by increasing Ca2+ concentrations in the cell. BK channels help regulate physiological processes, such as circadian behavioral rhythms and neuronal excitability. BK channels are also involved in many processes in the body, as it is a ubiquitous channel. They have a tetrameric structure that is composed of a transmembrane domain, voltage sensing domain, potassium channel domain, and a cytoplasmic
C-terminal domain The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
, with many X-ray structures for reference. Their function is to repolarize the membrane potential by allowing for potassium to flow outward, in response to a depolarization or increase in calcium levels.


Structure

Structurally, BK channels are homologous to voltage- and ligand-gated potassium channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain for the binding of intracellular calcium and magnesium. Each monomer of the channel-forming alpha subunit is the product of the KCNMA1 gene (also known as Slo1). The Slo1 subunit has three main structural domains, each with a distinct function: the voltage sensing domain (VSD) senses
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
across the membrane, the cytosolic domain (senses calcium concentration, Ca²⁺ ions), and the pore-gate domain (PGD) which opens and closes to regulate potassium permeation. The activation gate resides in the PGD, which is located at either the cytosolic side of S6 or the selectivity filter (selectivity is the preference of a channel to conduct a specific ion). The Voltage sensing domain and pore-gated domain are collectively referred as the
membrane-spanning The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
domains and are formed by transmembrane segments S1-S4 and S5-S6, respectively. Within the S4 helix contains a series of positively charged residues which serve as the primary voltage sensor. BK channels are quite similar to voltage gated K⁺ channels, however, in BK channels only one positively charged residue (Arg213) is involved in voltage sensing across the membrane. Also unique to BK channels is an additional S0 segment, this segment is required for β subunit
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the ''carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informatio ...
. and voltage sensitivity. The Cytosolic domain is composed of two RCK (regulator of potassium conductance) domains, RCK1 and RCK2. These domains contain two high affinity Ca²⁺ binding sites: one in the RCK1 domain and the other in a region termed the Ca²⁺ bowl that consists of a series of
Aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
(Asp) residues that are located in the RCK2 domain. The Mg²⁺ binding site is located between the VSD and the cytosolic domain, which is formed by: Asp residues within the S0-S1 loop, Asparagine residues in the cytosolic end of S2, and Glutamine residues in RCK1. In forming the Mg²⁺ binding site, two residues come from the RCK1 of one Slo1 subunit and the other two residues come from the VSD of the neighboring subunit. In order for these residues to coordinate the Mg²⁺ ion, the VSD and cytosolic domain from neighboring subunits must be in close proximity. Modulatory beta subunits (encoded by
KCNMB1 Calcium-activated potassium channel subunit beta-1 is a protein that in humans is encoded by the ''KCNMB1'' gene. Function MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the cont ...
, KCNMB2,
KCNMB3 Calcium-activated potassium channel subunit beta-3 is a protein that in humans is encoded by the ''KCNMB3'' gene. MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth ...
, or
KCNMB4 Calcium-activated potassium channel subunit beta-4 is a protein that in humans is encoded by the ''KCNMB4'' gene. MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth ...
) can associate with the tetrameric channel. There are four types of β subunits (β1-4), each of which have different expression patterns that modify the gating properties of the BK channel. The β1 subunit is primarily responsible for smooth muscle cell expression, both β2 and β3 subunits are neuronally expressed, while β4 is expressed within the brain. The VSD associates with the PGD via three major interactions: #Physical connection between the VSD and PGD through the S4-S5 linker. #Interactions between the S4-S5 linker and the cytosolic side of S6. #Interactions between S4 and S5 of a neighboring subunit.


Regulation

BK channels are associated and modulated by a wide variety of intra- and extracellular factors, such as auxiliary subunits (β, γ), Slobs (slo binding protein),
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
,
membrane voltage Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
, chemical ligands (Ca²⁺, Mg²⁺), PKC, The BK α-subunits assemble 1:1 with four different auxiliary types of β-subunits (β1, β2, β3 or β4). Trafficking to and expression of BK channels in the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
has been found to be regulated by distinct splicing motifs located within the intracellular C-terminal RCK domains. In particular a splice variant that excluded these motifs prevented cell surface expression of BK channels and suggests that such a mechanism impacts physiology and
pathophysiology Pathophysiology ( physiopathology) – a convergence of pathology with physiology – is the study of the disordered physiological processes that cause, result from, or are otherwise associated with a disease or injury. Pathology is the ...
. BK channels in the
vascular system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
are modulated by agents naturally produced in the body, such as
angiotensin II Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adre ...
(Ang II), high glucose or
arachidonic acid Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. Its name derives from the New Latin word ''arachi ...
(AA) which is modulated in diabetes by oxidative stress (ROS). A weaker voltage sensitivity allows BK channels to function in a wide range of membrane potentials. This ensures that the channel can properly perform its physiological function. Inhibition of BK channel activity by
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
of S695 by
protein kinase C In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and t ...
(PKC) is dependent on the phosphorylation of S1151 in C terminus of channel alpha-subunit. Only one of these phosphorylations in the tetrameric structure needs to occur for inhibition to be successful. Protein phosphatase 1 counteracts phosphorylation of S695. PKC decreases channel opening probability by shortening the channel open time and prolonging the closed state of the channel. PKC does not affect the single-channel conductance, voltage dependence, or the calcium sensitivity of BK channels.


Activation mechanism

BK channels are synergistically activated through the binding of calcium and magnesium ions, but can also be activated via voltage dependence. Ca²⁺ - dependent activation occurs when intracellular Ca²⁺ binds to two high affinity binding sites: one located in the
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
of the RCK2 domain (Ca²⁺ bowl), and the other located in the RCK1 domain. The binding site within the RCK1 domain has somewhat of a lower affinity for calcium than the Ca²⁺ bowl, but is responsible for a larger portion of the Ca²⁺ sensitivity. Voltage and calcium activate BK channels using two parallel mechanisms, with the voltage sensors and the Ca²⁺ bindings sites coupling to the activation gate independently, except for a weak interaction between the two mechanisms. The Ca²⁺ bowl accelerates activation kinetics at low Ca²⁺ concentrations while RCK1 site influences both activation and deactivation kinetics. One mechanism model was originally proposed by Monod, Wyman, and Changeux, known as the MWC model. The MWC model for BK channels explains that a
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
of the activation gate in channel opening is accompanied by a
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
to the Ca²⁺ binding site, which increases the affinity of Ca²⁺ binding. Magnesium-dependent activation of BK channels activates via a low-affinity metal binding site that is independent from Ca²⁺-dependent activation. The Mg²⁺ sensor activates BK channels by shifting the activation voltage to a more negative range. Mg²⁺ activates the channel only when the voltage sensor domain stays in the activated state. The cytosolic tail domain (CTD) is a chemical sensor that has multiple binding sites for different
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
. The CTD activates the BK channel when bound with intracellular Mg²⁺ to allow for interaction with the voltage sensor domain (VSD). Magnesium is predominantly coordinated by six oxygen atoms from the side chains of oxygen-containing residues, main chain carbonyl groups in
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, or
water molecules Water () is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "univer ...
. D99 at the C-terminus of the S0-S1 loop and
N172 Goodwin & Company was an American tobacco manufacturer from New York City. Initially E. Goodwin and Brother, the company was founded before the American Civil War. It was known for its cigarette brands "Gypsy Queen" and "Old Judge". In 1890, the ...
in the S2-S3 loop contain side chain oxygens in the voltage sensor domain that are essential for Mg²⁺ binding. Much like the Ca²⁺-dependent activation model, Mg²⁺-dependent activation can also be described by an allosteric MCW gating model. While calcium activates the channel largely independent of the voltage sensor, magnesium activates the channel by channel by an electrostatic interaction with the voltage sensor. This is also known as the Nudging model, in which Magnesium activates the channel by pushing the voltage sensor via electrostatic interactions and involves the interactions among side chains in different structural domains. Energy provided by voltage, Ca²⁺, and Mg²⁺ binding will propagate to the activation gate of BK channels to initiate ion conduction through the pore.


Effects on the neuron, organ, body as a whole


Cellular level

BK channels help regulate both the firing of
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
and
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
release. This modulation of
synaptic transmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
and electrical discharge at the cellular level is due to BK channel expression in conjunction with other potassium-calcium channels. The opening of these channels causes a drive towards the potassium equilibrium potential and thus play a role in speeding up the
repolarization In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarizat ...
of action potentials. This would effectively allow for more rapid stimulation. There is also a role played in shaping the general repolarization of cells, and thus after hyperpolarization (AHP) of action potentials. The role that BK channels have in the fast phase of AHP has been studied extensively in the hippocampus. It can also play a role in inhibiting the release of neurotransmitters. There are many BK channels in Purkinje cells in the
cerebellum The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebel ...
, thus highlighting their role in
motor coordination Motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in t ...
and function. Furthermore, BK channels play a role in modulating the activity of dendrites as well as astrocytes and
microglia Microglia are a type of neuroglia (glial cell) located throughout the brain and spinal cord. Microglia account for about 7% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune de ...
. They not only play a role in the CNS ( central nervous system) but also in smooth muscle contractions, the secretion of endocrine cells, and the proliferation of cells. Various γ subunits during early brain development are involved in neuronal excitability and in non-excitable cells they often are responsible as a driving force of calcium. Therefore, these subunits can be targets for therapeutic treatments as BK channel activators. There is further evidence that inhibiting BK channels would prevent the efflux of potassium and thus reduce the usage of
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
, in effect allowing for neuronal survival in low oxygen environments. BK channels can also function as a neuronal protectant in terms such as limiting calcium entry into the cells through
methionine oxidation Methionine sulfoxide is the organic compound with the formula CH3S(O)CH2CH2CH(NH2)CO2H. It is an amino acid that occurs naturally although it is formed post-translationally. Oxidation of the sulfur of methionine results in methionine sulfoxide o ...
.


Organ level

BK channels also play a role in hearing. This was found when the BK ɑ-subunit was knocked out in
mice A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
and progressive loss of cochlear hair cells, and thus hearing loss, was observed. BK channels are not only involved in hearing, but also circadian rhythms. Slo binding proteins (Slobs) can modulate BK channels as a function of
circadian rhythm A circadian rhythm (), or circadian cycle, is a natural, internal process that regulates the sleep–wake cycle and repeats roughly every 24 hours. It can refer to any process that originates within an organism (i.e., Endogeny (biology), endogeno ...
s in neurons. BK channels are expressed in the
suprachiasmatic nucleus The suprachiasmatic nucleus or nuclei (SCN) is a tiny region of the brain in the hypothalamus, situated directly above the optic chiasm. It is responsible for controlling circadian rhythms. The neuronal and hormonal activities it generates regula ...
(SCN), which is characterized to influence the
pathophysiology Pathophysiology ( physiopathology) – a convergence of pathology with physiology – is the study of the disordered physiological processes that cause, result from, or are otherwise associated with a disease or injury. Pathology is the ...
of sleep. BK channel openers can also have a protective effect on the
cardiovascular system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
. At a low concentration of calcium BK channels have a greater impact on
vascular tone Vascular resistance is the resistance that must be overcome to push blood through the circulatory system and create flow. The resistance offered by the systemic circulation is known as the systemic vascular resistance (SVR) or may sometimes be ca ...
. Furthermore, the signaling system of BK channels in the cardiovascular system have an influence on the functioning of coronary blood flow. One of the functions of the β subunit in the brain includes inhibition of the BK channels, allowing for the slowing of channel properties as well as the ability to aid in prevention of seizures in the temporal lobe.


Bodily function level

Mutations of BK channels, resulting in a lower amount of expression in mRNA, is more common in people who have mental disabilities (via hypofunction ), schizophrenia or
autism The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental condition (or conditions) characterized by difficulti ...
. Moreover, increased
repolarization In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarizat ...
caused by BK channel mutations may lead to dependency of alcohol initiation of dyskinesias, epilepsy or paroxysmal movement disorders. Not only are BK channels important in many cellular processes in the adult it also is crucial for proper nutrition supply to a developing fetus. Thus, estrogen can cause an increase in the density of BK channels in the uterus. However, increased expression of BK channels have been found in tumor cells, and this could influence future
cancer therapy Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal ble ...
, discussed more in the pharmacology section. BK channels are ubiquitous throughout the body and thus have a large and vast impact on the body as a whole and at a more cellular level, as discussed.


Pharmacology


Potential issues

Several issues arise when there is a deficit in BK channels. Consequences of the malfunctioning BK channel can affect the functioning of a person in many ways, some more life-threatening than others. BK channels can be activated by exogenous pollutants and endogenous gasotransmitters carbon monoxide, nitric oxide, and hydrogen sulphide. Mutations in the proteins involved with BK channels or genes encoding BK channels are involved in many diseases. A malfunction of BK channels can proliferate in many disorders such as: epilepsy, cancer, diabetes, asthma, and
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
. Specifically, β1 defect can increase
blood pressure Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" r ...
and hydrosaline retention in the kidney. Both loss of function and gain of function mutations have been found to be involved in disorders such as epilepsy and chronic pain. Furthermore, increases in BK channel activation, through gain-of-function mutants and amplification, has links to epilepsy and cancer. Moreover, BK channels play a role in tumors as well as cancers. In certain cancers gBK, a variant ion channel called glioma BK channel, can be found. It is known that BK channels do in some way influence the division of cells during
replication Replication may refer to: Science * Replication (scientific method), one of the main principles of the scientific method, a.k.a. reproducibility ** Replication (statistics), the repetition of a test or complete experiment ** Replication crisi ...
, which when unregulated can lead to cancers and tumors. Moreover, an aspect studied includes the migration of cancer cells and the role in which BK channels can facilitate this migration, though much is still unknown. Another reason why BK channel understanding is important involves its role in organ transplant surgery. This is due to the activation of BK channels influencing repolarization of the resting membrane potential. Thus, understanding is crucial for safety in effective transplantation.


Current developments

BK channels can be used as pharmacological targets for the treatment of several medical disorders including
stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
and
overactive bladder Overactive bladder (OAB) is a condition where there is a frequent feeling of needing to urinate to a degree that it negatively affects a person's life. The frequent need to urinate may occur during the day, at night, or both. If there is loss ...
. There have been attempts to develop synthetic molecules targeting BK channels, however their efforts have proven largely ineffective thus far. For instance, BMS-204352, a molecule developed by Bristol-Myers Squibb, failed to improve clinical outcome in stroke patients compared to placebo. However, there have been some success from the
agonist An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the ago ...
to BKCa channels, BMS-204352, in treating deficits observed in Fmr1
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, a model of
Fragile X syndrome Fragile X syndrome (FXS) is a genetic disorder characterized by mild-to-moderate intellectual disability. The average IQ in males with FXS is under 55, while about two thirds of affected females are intellectually disabled. Physical features may ...
. BK channels also function as a blocker in
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems wi ...
and are a focus in investigating its use as a therapy for stroke.


Future directions

There are many applications for therapeutic strategies involving BK channels. There has been research displaying that a blockage of BK channels results in an increase in neurotransmitter release, effectively indicating future therapeutic possibilities in
cognition Cognition refers to "the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, ...
enhancement, improved memory, and relieving depression. A behavioral response to alcohol is also modulated by BK channels, therefore further understanding of this relationship can aid treatment in patients who are alcoholics. Oxidative stress on BK channels can lead to the negative impairments of lowering blood pressure through cardiovascular relaxation have on both aging and disease. Thus, the signaling system can be involved in treating
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
and atherosclerosis through targeting of the ɑ subunit to prevent these detrimental effects. Furthermore, the known role that BK channels can play in cancer and tumors is limited. Thus, there is not a lot of current knowledge regarding specific aspects of BK channels that can influence tumors and cancers. Further study is crucial, as this could lead to immense development in treatments for those with cancer and tumors. It is known that epilepsies are due to over-excitability of neurons, which BK channels have a large impact on controlling hyperexcitability. Therefore, understanding could influence the treatment of epilepsy. Overall, BK channels are a target for future pharmacological agents that can be used for benevolent treatments of disease.


See also

*
Calcium-activated potassium channel subunit alpha-1 Calcium-activated potassium channel subunit alpha-1 also known as large conductance calcium-activated potassium channel, subfamily M, alpha member 1 (KCa1.1), or BK channel alpha subunit, is a voltage gated potassium channel encoded by the KCNMA1 ...
* Calcium-activated potassium channel *
Voltage-gated potassium channel Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized ce ...


References


Further reading

* * * *


External links

* * {{Ion channels, g3 Potassium channels Electrophysiology